// HALBORN

Horizen Labs -
Grapes Staking

Smart Contract Security Audit

Prepared by: Halborn
Date of Engagement: August 15th, 2022 - September 30th, 2022

Visit: Halborn.com

https://halborn.com

DOCUMENT REVISION HISTORY 5

CONTACTS 6
1 EXECUTIVE OVERVIEW 7
1.7 INTRODUCTION 8
1.2 AUDIT SUMMARY 8
1.3 TEST APPROACH & METHODOLOGY 8

RISK METHODOLOGY 9
1.4 SCOPE 11
2 ASSESSMENT SUMMARY & FINDINGS OVERVIEW 12
3 FINDINGS & TECH DETAILS 14
3.1 (HAL-01) UNDERFLOW MAY OCCUR DURING CLAIMS DUE TO LOSS OF PRE-

3.

2

CISION: REWARDS WILL BE LOCKED PERMANENTLY FOR SOME USERS -

15
Description 15
Proof of Concept 15
Recommendation 17
Remediation Plan 18

(HAL-02) ALL THE APE COINS STAKED IN THE BAKC POOL CAN BE DRAINED

BY ANY BAYC/MAYC HOLDER - 19
Description 19
Proof of Concept 22
Risk Level 23
Recommendation 23

Remediation Plan 24

3.3

3.4

3.5

3.6

(HAL-03) APE COINS STAKED AND ACCRUED REWARDS CAN BE STOLEN FROM
THE BAKC POOL AFTER THE BAKC COMMITTED IS TRANSFERRED TO A NEW

OWNER - 25
Description 25
Proof of Concept 26
Risk Level 27
Recommendation 27
Remediation Plan 27

(HAL-04) APE COINS STAKED AND ACCRUED REWARDS CAN BE STOLEN FROM

THE BAKC POOL IF THE BAKC ID @ IS TRANSFERRED - 28
Description 28
Proof of Concept 29
Risk Level 30
Recommendation 30
Remediation Plan 30

(HAL-05) APE COINS STAKED AND ACCRUED REWARDS CAN BE STOLEN FROM
THE BAKC POOL IF THE BAKC ID @ IS PAIRED WITH THE BAYC/MAYC WITH

ID 0 - 31
Description 31
Proof of Concept 33
Risk Level 33
Recommendation 33
Remediation Plan 34

(HAL-06) NFT HOLDERS CAN ALLOW ANYONE TO STAKE INTO THE NFT
POOLS THROUGH THE USE OF A SMART CONTRACT - 35

Description 35

Risk Level 36

3.

3.

3.

3.

7

8

9

.10

11

Recommendation 36
Remediation Plan 36

(HAL-@7) POOLS MAY GET LOCKED AFTER AN EMPTY CLAIM - MEDIUM 37

Description 37
Recommendation 38
Remediation Plan 38
(HAL-@8) UNSAFE TYPE CASTINGS - LOW 39
Description 39
Recommendation 41
Remediation Plan 41

(HAL-09) CONTRACT DOES NOT ENFORCE THAT SETREWARDSPERTIMERANGE

IS CALLED IN A CORRECT ORDER - LOW 42
Description 42
Recommendation 43
Remediation Plan 43
(HAL-10) WITHDRAWAPECOIN FUNCTION DOES NOT AUTOMATICALLY CLAIM
THE ACCRUED REWARDS - INFORMATIONAL 44
Description 44
Recommendation 44
Remediation Plan 44

(HAL-11) MINIMUM DEPOSIT AMOUNT CAN BE BYPASSED - INFORMATIONAL

45
Description 45
Proof of Concept 45
Recommendation 46
Remediation Plan 46

3.12 (HAL-12) LACK OF AN EMERGENCYWITHDRAW FUNCTION - INFORMATIONAL

47

3.13

4.1

4.2

Description

Recommendation

Remediation Plan

47

47

47

(HAL-13) MISSING REQUIRE STATEMENT IN WITHDRAW FUNCTION - IN-

FORMATIONAL

Description
Recommendation
Remediation Plan
AUTOMATED TESTING
STATIC ANALYSIS REPORT
Description

Slither results
AUTOMATED SECURITY SCAN

Description

MythX results

48

48

48

48

49

50

50

50

54

54

54

DOCUMENT REVISION HISTORY

VERSION MODIFICATION DATE AUTHOR
0.1 Document Creation 08/15/2022 Roberto Reigada
0.2 Document Updates 09/23/2022 Roberto Reigada
0.3 Draft Review 09/23/2022 Gabi Urrutia
1.0 Remediation Plan 10/03/2022 Roberto Reigada
1.1 Remediation Plan Review | 10/04/2022 Gabi Urrutia
1.2 Document Updates 11/28/2022 Roberto Reigada
1.3 Document Updates Review | 11/29/2022 Piotr Cielas
1.4 Document Updates Review | 11/29/2022 Gabi Urrutia

CONTACTS

CONTACT COMPANY EMAIL
Rob Behnke Halborn Rob.Behnke@halborn.com
Steven Walbroehl Halborn Steven.Walbroehl@halborn.com
Gabi Urrutia Halborn Gabi.Urrutia@halborn.com
Piotr Cielas Halborn Piotr.Cielas@halborn.com
Roberto Reigada Halborn Roberto.Reigada@halborn.com

mailto:Rob.Behnke@halborn.com
mailto:Steven.Walbroehl@halborn.com
mailto:Gabi.Urrutia@halborn.com
mailto:Piotr.Cielas@halborn.com
mailto:Roberto.Reigada@halborn.com

EXECUTIVE OVERVIEW

EXECUTIVE OVERVIEW

1.7 INTRODUCTION

Horizen Labs engaged Halborn to conduct a security audit on their smart
contracts beginning on August 15th, 2022 and ending on October 4th, 2022.
The security assessment was scoped to the smart contracts provided in the
GitHub repository HorizenlLabs/grapes-staking/.

1.2 AUDIT SUMMARY

The team at Halborn was provided 6 weeks for the engagement and assigned a
full-time security engineer to audit the security of the smart contracts.
The security engineer is a blockchain and smart-contract security expert
with advanced penetration testing, smart-contract hacking, and deep
knowledge of multiple blockchain protocols.

The purpose of this audit is to:

®* Ensure that smart contract functions operate as intended

®* Identify potential security issues with the smart contracts

In summary, Halborn identified some security risks that were mostly
addressed by the Horizen Labs team.

1.3 TEST APPROACH & METHODOLOGY

Halborn performed a combination of manual and automated security testing
to balance efficiency, timeliness, practicality, and accuracy in regard
to the scope of this audit. While manual testing is recommended to
uncover flaws in logic, process, and implementation; automated testing
techniques help enhance coverage of the code and can quickly identify
items that do not follow the security best practices. The following

phases and associated tools were used during the audit:

https://github.com/HorizenLabs/grapes-staking/

EXECUTIVE OVERVIEW

® Research into architecture and purpose

Smart contract manual code review and walkthrough

Graphing out functionality and contract logic/connectivity/functions

(solgraph)

® Manual assessment of use and safety for the critical Solidity
variables and functions in scope to identify any arithmetic related
vulnerability classes

® Manual testing by custom scripts

®* Scanning of solidity files for vulnerabilities, security hot-spots

or bugs. (MythX)

Static Analysis of security for scoped contract, and imported

functions. (Slither)

®* Testnet deployment (Brownie, Remix IDE)

RISK METHODOLOGY:

Vulnerabilities or issues observed by Halborn are ranked based on the
risk assessment methodology by measuring the LIKELIHOOD of a security
incident and the IMPACT should an incident occur. This framework
works for communicating the characteristics and impacts of technology
vulnerabilities. The quantitative model ensures repeatable and accurate
measurement while enabling users to see the underlying vulnerability
characteristics that were used to generate the Risk scores. For every
vulnerability, a risk level will be calculated on a scale of 5 to 1 with
5 being the highest likelihood or impact.

RISK SCALE - LIKELIHOOD

Almost certain an incident will occur.

High probability of an incident occurring.
Potential of a security incident in the long term.

Low probability of an incident occurring.

- N wWw b~ O
|

Very unlikely issue will cause an incident.

RISK SCALE - IMPACT

5 - May cause devastating and unrecoverable impact or loss.
4 - May cause a significant level of impact or loss.

EXECUTIVE OVERVIEW

3 - May cause a partial impact or loss to many.

2 - May cause temporary impact or loss.

1 - May cause minimal or un-noticeable impact.

The risk level is then calculated using a sum of these two values, creating

a value of 10 to 1 with 10 being the highest level of security risk.

CRITICAL HIGH MEDIUM LOW

10 - CRITICAL

9_

7
5 -
3

- h O

HIGH

MEDIUM

LOW

VERY LOW AND INFORMATIONAL

10

EXECUTIVE OVERVIEW

1.4 SCOPE

IN-SCOPE:
The security assessment was scoped to the following smart contract:

®* ApeCoinStaking.sol
® ApeCoinStakedVoting.sol

Initial Commit ID:
- 5d995f273ebd684c22ded70a66728d51936d5379

Fixed Commit ID:
- 80631eec49802396c8e4384dba46e4662a36516b

11

https://github.com/HorizenLabs/grapes-staking/tree/5d995f273ebd684c22ded70a66728d51936d5379
https://github.com/HorizenLabs/grapes-staking/tree/80631eec49802396c8e4384dba46e4662a36516b

EXECUTIVE OVERVIEW

IMPACT

2. ASSESSMENT SUMMARY & FINDINGS
OVERVIEW

CRITICAL

HIGH

5

(HAL-07)

(HAL-08)
(HAL-09)

LIKELIHOOD

(HAL-01)
(HAL-02)
(HAL-03)
(HAL-04)
(HAL-05)

12

EXECUTIVE OVERVIEW

SECURITY ANALYSIS

RISK LEVEL

REMEDIATION DATE

HAL@1 - UNDERFLOW MAY OCCUR DURING
CLAIMS DUE TO LOSS OF PRECISION:
REWARDS WILL BE LOCKED PERMANENTLY
FOR SOME USERS

Critical

SOLVED - ©9/28/2022

HAL@2 - ALL THE APE COINS STAKED IN
THE BAKC POOL CAN BE DRAINED BY ANY
BAYC/MAYC HOLDER

Critical

SOLVED - 09/28/2022

HAL@3 - APE COINS STAKED AND ACCRUED
REWARDS CAN BE STOLEN FROM THE BAKC
POOL AFTER THE BAKC COMMITTED IS
TRANSFERRED TO A NEW OWNER

Critical

SOLVED - 09/28/2022

HAL@4 - APE COINS STAKED AND ACCRUED
REWARDS CAN BE STOLEN FROM THE BAKC
POOL IF THE BAKC ID @ IS TRANSFERRED

Critical

SOLVED - 09/28/2022

HAL@5 - APE COINS STAKED AND
ACCRUED REWARDS CAN BE STOLEN FROM
THE BAKC POOL IF THE BAKC ID @ IS
PAIRED WITH THE BAYC/MAYC WITH ID @

Critical

SOLVED - 09/28/2022

HALO6 - NFT HOLDERS CAN ALLOW
ANYONE TO STAKE INTO THE NFT POOLS
THROUGH THE USE OF A SMART CONTRACT

HAL@7 - POOLS MAY GET LOCKED AFTER
AN EMPTY CLAIM

Medium

HAL@8 - UNSAFE TYPE CASTINGS

Low

HAL@9 - CONTRACT DOES NOT ENFORCE
THAT SETREWARDSPERTIMERANGE IS
CALLED IN A CORRECT ORDER

HAL1@ - WITHDRAWAPECOIN FUNCTION
DOES NOT AUTOMATICALLY CLAIM THE
ACCRUED REWARDS

HALT11 - MINIMUM DEPOSIT AMOUNT CAN
BE BYPASSED

HAL12 - LACK OF AN
EMERGENCYWITHDRAW FUNCTION

HAL13 - MISSING REQUIRE STATEMENT
IN WITHDRAW FUNCTION

RISK ACCEPTED

SOLVED - ©9/28/2022

SOLVED - 09/28/2022

SOLVED - 09/28/2022

SOLVED - ©9/28/2022

ACKNOWLEDGED

ACKNOWLEDGED

SOLVED - 09/30/2022

13

FINDINGS & TECH
DETAILS

FINDINGS & TECH DETAILS

3.1 (HAL-01) UNDERFLOW MAY OCCUR
DURING CLAIMS DUE TO LOSS OF
PRECISION: REWARDS WILL BE LOCKED
PERMANENTLY FOR SOME USERS -

Description:

Currently, there is a known issue related to SushiSwap MasterChefV2 forks
where user’s transactions may revert when withdrawing & claiming.

The rewardDebt calculation 1logic may cause an integer underflow.
rewardDebt gets updated in the _deposit(), _claim() and _withdraw()
functions. It gets updated based on the change in the amount of Ape
Coins staked in the pool.

Although, the update logic is not “path-independent”. Each rewardDebt
subtraction in _withdraw() always gets rounded down.

Multiple withdrawals can end up causing the actual rewardDebt to be
“higher” than it should be. This could cause the pendingRewards() call
to overflow and users to not be able to claim their rewards from the
staking pools as the contract would not have enough balance of Ape Coins.

Using the SafeCast library, as it is recommended in the HAL06 finding,
would prevent the overflow but the claim() would still revert.

Proof of Concept:

In order to achieve the result in the screenshot, some fuzzing was
performed. Basically, the rewards for the Ape Coin pool were configured
this way:

contract_ApeCoinStaking.setRewardsPerTimeRange (0, 1000_000000000000000000
, 1672531200, 1672567200, @, {'from': owner})

15

https://twitter.com/n1punp/status/1536312043372187651?s=20&t=hOfzg4MjmpEELu-2llN7mA

FINDINGS & TECH DETAILS

contract_ApeCoinStaking.setRewardsPerTimeRange (0, 100_000000000000000000
, 1672567200, 1672603200, @, {'from': owner})

contract_ApeCoinStaking.setRewardsPerTimeRange (0, 10_000000000000000000
, 1672603200, 1672639200, @, {'from': owner})

contract_ApeCoinStaking.setRewardsPerTimeRange (0, 1_000000000000000000,
1672639200, 1672675200, @, {'from': owner})

User1 staked 100_123456789012345678 Ape Coins into the Ape pool before
the first quarter started.
User2 staked 100_123456789012345678 Ape Coins into the Ape pool before
the first quarter started.

Created the following loop with 4@ iterations (10 hours per quarter, 4
quarters):

1 for i in range(40):

2 print ()

3 output.greenn(”Calling -> chain.sleep(3601)")

4 chain.sleep(3601)

5 output.greenn(”Calling -> chain.sleep(1)")

6 chain.mine (1)

7 print(”\n")

8 valuel = randint(1, 10)

9 valueToWithdraw = randint(1_000000000000000000 , 2

L, _000000000000000000)

10 if (valuel > 5):

11 output.yelloww(”Calling -> contract_ApeCoinStaking.
L, withdrawApeCoin(" + str(valueToWithdraw) + ", userl, {'from':
L, user1})")

12 contract_ApeCoinStaking.withdrawApeCoin(valueToWithdraw,
L, userl, {'from': userl})

13 output.yelloww(”Calling -> contract_ApeCoinStaking.
L, claimApeCoin(userl.address, {'from': user1})")

14 contract_ApeCoinStaking.claimApeCoin(userl.address, {'from
L, ': userl1})

15 value2 = randint(1, 10)

16 if (value2 > 5):

17 output.yelloww(”"Calling -> contract_ApeCoinStaking.
L, withdrawApeCoin(" + str(valueToWithdraw) + ", user2, {'from':

16

FINDINGS & TECH DETAILS

L, user23})")

18 contract_ApeCoinStaking.withdrawApeCoin(valueToWithdraw,
L, user2, {'from': user2})

19 output.yelloww(”Calling -> contract_ApeCoinStaking.

L, claimApeCoin(user2.address, {'from': user2})")

20 contract_ApeCoinStaking.claimApeCoin(user2.address, {'from
L, ': user2})
21 output.redd(”"contract_ApeCoinStaking.pendingRewards (@, user]l

L, @) -> " + str(contract_ApeCoinStaking.pendingRewards (@, userl, 0))

22 output.redd(”"contract_ApeCoinStaking.pendingRewards (0, user?2
L, @) -> " + str(contract_ApeCoinStaking.pendingRewards (@, user2, @))
L)

Calling —> conczac:7@ECD1ns:at1ng.wichdxaunpec:.m(1139766323668330737, userz, {"from': user2})
Transaction sent: 4 afaBafs83al ed2af
Gas price: gwei Gas limit: &
ApeCoinStaking.withdrawApeCoin confirmed

&4ac2as

Gas used:

Calling -> contract ApeCoinStaking. clalmApeColn(usezz address, ('fzom" user2})
Transaction sent: 0x%9a€9ccT Sbe04 c0
Gas price: 0.0 gwei Gas limit: Nonce: 37
ApeCoinStaking.claimApeCoin confirmed (ERC20: transfer amount excesds balance)

Gas used: €

> 0
> 115792089237316195423570985008687907853269984665640564039457584007913129639935

contract_ApeCoinStaking.pendingRewards (0, userl, 0)

contract_ApeCoinStaking.pendingRewards (0, user, 0)

Calling -> chain.sleep (3601)
Calling -> chain.sleep (1)

Calling -> contract_ ApeCoinStaking.withdrawhpeCoin(1450176693174492652, userl, {'from': userl})
gedfllaca60cTdedb647ceTcdbe256

Transaction sent: O 0£65d6ecs3d!
Gas price: gwei Gas limit: &

ZpeCoinStaking.withdrawhpeCoin confirmed

Calling —> contract ApeCoinStaking.claimpeCoin(userl.addzess, {'from': userl})
Transaction sent: Ox36e4e7 £756cb4dcBTE6CT
Gas price: gwel Nonce: 45
ApeCoinStaking.claimApeCoin confirmed (ERC20: transfer amount excesds balance) Block:

Gas used:

Calling -> contract_ApeCoinStaking w1chdraw1-l.pECm.n(145017669317&992652, usexz, {"from': user2})

Transaction sent: Ox54f%abbcaéoed? 8as
Gas price: 0.0 gwei Gas limi

ApeCoinStaking.withdrawhpeCoin confirmed

Calling -»> contract_ApsCoinStaking.claimBpeCoin(user?.address, {'from': user2})
Transaction sent: O 0fa. £97 albld4a739a76bcd2bc27bcbl8b3£89015aad?

Gas price: gwei Gas limit: & 0 Nonce: 39

ApeCoinStaking.claimBpeCoin confirmed (ERC20: transfer amount exceeds balance) Block: 1

I

contract_ApeCoinStaking.pendingRewards (0, userl, 0) -»> 115792089237316195423570985008687907653265984665640564035457584007513129639935
contract_ ApeCoinStaking.pendingRewards (0, userZ, 0) -> 11579208923731619542357088500868790765326596846656405640354575684007513129639935
contract_ApeCoin.balanceOf (userl) -> 535548727925632081714
contract_ ApeCoin.balanceOf (user2) -> 533962730506486575180

Calling -> contract ApECm.nScatlng wlthdzauApECoxn(68620522265685006490 userl
Transaction sent: O 4b40aef38
Gas price: gwel Gas limit:
ApeCoinStaking.withdrawApeCoin confirmed

{'from': userl})

Gas used:

Calling -> contract_ApeCoinStaking.withdrawhpeCoin(73114932880221025707, user2, {'from': user2})
Transaction sent: Oxcéface003lck 5a%ad2390 cel:dfc):b':a:, af75e6b51bfo65dfdla
Gas price: gwei Gas limit: & NWonce: 4
BpeCoinStaking.withdrawhpeCoin confirmed Black:

Gas used:

contract_ApeCoin.balanceOf (userl) -> 604169250191317088204
contract_ApeCoin.balanceOf (user2) -> 607077663386707600887

Recommendation:

It is recommended to use the NomiChef’s original MasterChef’s rewardDebt
logic.

17

https://etherscan.io/address/0xc2edad668740f1aa35e4d8f227fb8e17dca888cd#code
https://etherscan.io/address/0xc2edad668740f1aa35e4d8f227fb8e17dca888cd#code

FINDINGS & TECH DETAILS

Remediation Plan:

SOLVED: The Horizen Labs team solved the issue. Precision is not lost
now each time a withdraw() is performed, since the division was removed
from the rewardsDebt calculation.

18

FINDINGS & TECH DETAILS

3.2 (HAL-02) ALL THE APE COINS
STAKED IN THE BAKC POOL CAN BE
DRAINED BY ANY BAYC/MAYC HOLDER -

Description:

The ApeCoinStaking contract implements 4 different pools:
- ApeCoin pool

- BAYC pool

- MAYC pool

- Pair pool (BAKC)

In order to stake in the Pair pool, users should first commit a BAYC/BAKC
or a MAYC/BAKC pair.

A paired BAKC NFT may change ownership before uncommitting from the
ApeCoinStaking contract. In this edge case of a split pair, the following

rules were implemented:

®* Both owners (the current owner of one NFT and the new owner of the
other NFT) can uncommit.

®* Upon uncommitting the amount of Ape Coins staked is given to the
BAYC/MAYC owner and the accrued rewards are given to the BAKC owner.

®* The user that performs the uncommitting will obviously pay the gas

costs.

A pair is committed through the depositBAKC() function:

Listing 2: ApeCoinStaking.sol (Lines 205, 206)

19

FINDINGS & TECH DETAILS

201
202
203

L

207

* - ‘_maycPairs‘: Array for MAYC/BAKC pairs

*/

function depositBAKC(PairNftWithAmount[] calldata _baycPairs,

PaiertWithAmount[] calldata _maycPairs) external {
updatePool (BAKC_POOL_ID);

}

628
N
629
630
631
632
633
L
634
635
636
L
L
637
638
N
L
639
640
N
641
L
642
643
N
644
645
646
647
L
648
649
650

function _depositPairNft(uint256 mainTypePoolId, PairNftWithAmount
[l calldata _nfts) private {
for(uint i; i < _nfts.length; ++i) {

uint256 mainTokenId _nfts[i].mainTokenId;

uint256 bakcTokenId _nfts[i].bakcTokenId;

uint256 amount = _nfts[i].amount;

Position storage position = nftPosition[BAKC_POOL_ID][
bakcTokenId];

if(position.stakedAmount == @) {

require(nftContracts[mainTypePoolId].ownerOf (
mainTokenId) == msg.sender && !mainToBakc[mainTypePoolId][
mainTokenId]. isPaired

, "Main Token not owned by caller or already paired”);

require(nftContracts[BAKC_POOL_IDJ].ownerOf (bakcTokenId
) == msg.sender && !bakcToMain[bakcTokenId][mainTypePoolId].
isPaired

,"BAKC Token not owned by caller or already paired");

} else {
require(mainTokenId == bakcToMain[bakcTokenId][
mainTypePoolId]. tokenId, "BAKC Token already paired”);
}

_depositNftGuard (BAKC_POOL_ID, position, amount);
emit DepositPairNft(msg.sender, amount, mainTypePoolId,
mainTokenId, bakcTokenId);
}

20

FINDINGS & TECH DETAILS

651 function _depositNftGuard(uint256 _poolId, Position storage
L, _position, uint256 _amount) private {

652 require(_amount >= MIN_DEPOSIT, "Can't deposit less than 1
L, $APE");

653 require(_amount + _position.stakedAmount

654 <= pools[_poolId].rewardsPerHourInRanges[pools[_poolId].

L, lastRewardsRangeIndex].capPerPosition, "Can't stake more than cap
L, amount”);

655

656 _deposit(_poolId, _position, _amount);

657 }

As we can see, the contract stores in the mainToBakc and bakcToMain
mappings the respective pair of each of the NFTs.

Although, these mappings are not properly validated during the withdrawal:

339 /*%

340 x @dev Uncommits/Withdraws given amount of staked $APE from NFTs
L, in BAKC Pool.

341 x/

342 function withdrawBAKC(PairNftWithAmount[] calldata _baycPairs,
L, PairNftWithAmount[] calldata _maycPairs) external {

343 updatePool (BAKC_POOL_ID);

344 _withdrawPairNft (BAYC_POOL_ID, _baycPairs);
345 _withdrawPairNft (MAYC_POOL_ID, _maycPairs);
346 }

726 function _withdrawPairNft(uint256 mainTypePoolId,
L, PairNftWithAmount[] calldata _nfts) private {

727 for(uint i; i < _nfts.length; ++i) {

728 uint256 mainTokenId = _nfts[i].mainTokenId;

729 uint256 bakcTokenId = _nfts[i].bakcTokenId;

730 uint256 amount = _nfts[i].amount;

731 address mainTokenOwner = nftContracts[mainTypePoolId].
L, ownerOf (mainTokenId);

732 address bakcOwner = nftContracts[BAKC_POOL_ID].ownerOf (
L, bakcTokenId);

21

FINDINGS & TECH DETAILS

733
734

735
736

737

738

739

740

741

742

743

744

745

746

747
748

require(mainTokenOwner == msg.sender || bakcOwner == msg.

sender, "At least one token in pair must be owned by caller”);

Position storage position = nftPosition[BAKC_POOL_ID][
bakcTokenId];
require(mainTokenOwner == bakcOwner || amount == position.

stakedAmount, "Split pair can't partially withdraw”);

if (amount == position.stakedAmount) {
uint256 rewardsToBeClaimed = _claim(BAKC_POOL_ID,

position, bakcOwner);
mainToBakc[mainTypePoolId][mainTokenId].isPaired =
false;
bakcToMain[bakcTokenId][mainTypePoolId].isPaired =
false;
emit ClaimRewardsPairNft(msg.sender,
rewardsToBeClaimed, mainTypePoolId, mainTokenId, bakcTokenId);
3
_withdraw(BAKC_POOL_ID, position, amount, mainTokenOwner);
emit WithdrawPairNft(msg.sender, amount, mainTypePoolId,
mainTokenId, bakcTokenId);
3
3

Proof of Concept:

User1l with the mock address 0x0000000000000000000000000000000000000101
owns the BAYC NFT #7337 AND BAKC NFT #851.

User2 with the mock address 0x0000000000000000000000000000000000000102
owns the BAYC NFT #8523.

3.

. User1 commits BAYC #7337 and BAKC #851 and stakes 100 Ape Coins in

the BAKC pool through the depositBAKC() function.

. User2 calls withdrawBAKC([(8523, 851, 100_000000000000000000)1, [1)

He only owns the BAYC #8523 but as the smart contract just checks
the ownership of one of the NFTs of the pair and also does not
check if that BAKC is actually paired to the BAYC passed, user2 can
unstake the Ape Coins previously staked by userl.

This could be repeated with any BAKC pair staked in the pool.

22

FINDINGS & TECH DETAILS

contract BAYC.ownerOf (7337)
contract_B owner(f (852
contract MAYC.ownerOf (4851
contract_KEN.ownerOf (851) ->
contract_ KEN.ownerOf (860) ->
contract_ ApeCoin.balanceCf (userl)

contract_ApeCoin.balanceOf (user2)

Calling -> contract_ApeCoin.approve (contract
Transaction sent: Oxef7d8dabfs g 1
Gas price: 0.0 gwel Gas limit:
APECCIN.approve confirmed Block: 1

ApeCoinStaking.address
2 8 9fac2fchbi

Gas used: 4

Calling -»> contract ApeCoinStaking.depositBAKC([(7337, 851, 100 000000000000000000)]1, [I1, {'from':

Transaction sent: Ox de C £
Gas price: 0.0 gwei
ApeCoinStaking.depositBAEC confirmed Block:

Honce:

Transaction sent:
Gas price: 0
ApeCoinStaking.withdrawBAEC confirmed Block:

contract_ApeCoinStaking.stakedTotal (userl)
contract_ApeCoin.balanceOf (user2) -> 200
»>>> calltrace (tx2)

Call trace for 'O=4 STbEs
Initial call cost [-24002 gas]
ApeCoinStaking.withdrawBAEC 0:2450 [-41367 / -19868 gas]

dob0

— BAYC.ownerCf [STATICCALL] 414:653 [3984 gas]
address: 0xBC4CROEJATE47A8aBTC2061c2E118A18a936f13D
input arguments:
L tokenId: 8523

— KEN.ownerOf [STATICCALL] 777:1020 [2362 gas]
t:: address: 0xba30ESF9Bb24caal03E9f2f0497AA2BTFDFY5623
input arguments:
L tokenId: 851

- APECOIN.transfer [CALL] 1%832:22 [15153 gas]
address: 0x4d224452801ACEdEB2F0asbE1553790b5D594381
wvalues: 0
input arguments:
recipient:
amount: 100000000000000000000

Risk Level:

Likelihood - 5
Impact - 5

Recommendation:

It is recommended to validate that the NFTs passed to the withdrawBAKC()

function call are paired.

’

100_000000000000000000,
ibb365cfbbibaa

01%)

_0000000000000000

Gas used:

Tbb5fb%1cT1lb7es

(0.01%)

46

{'from"':

userl})

userllt)

00)1, [1, {'from': userz})

23

FINDINGS & TECH DETAILS

Remediation Plan:

SOLVED: The Horizen Labs team solved the issue. The ApeCoinStaking smart
contract now verifies that the NFT IDs passed to withdrawBAKC() are
correctly paired.

24

FINDINGS & TECH DETAILS

3.3 (HAL-03) APE COINS STAKED AND
ACCRUED REWARDS CAN BE STOLEN FROM
THE BAKC POOL AFTER THE BAKC
COMMITTED IS TRANSFERRED TO A NEW
OWNER -

Description:

Related to the BAKC pool and according to the documentation provided, when
a BAYC/BAKC or MAYC/BAKC pair is split (e.g. the BAKC is sold to another
user) the only functions available are uncommitting and depositing. Other
functions (such as withdrawing and claiming) will be disabled in the smart
contract. If a user stores one pair in a different wallet, that user
will not be able to claim rewards and must uncommit first.

To implement this, the ApeCoinStaking contract has the following require
statements in the claimPairNft() function:

Listing 6: ApeCoinStaking.sol (Lines 691,692)

function _claimPairNft(uint256 mainTypePoolId, PairNft[] calldata
L, _pairs, address _recipient) private {
for(uint i; i < _pairs.length; ++i) {
uint256 mainTokenId = _pairs[i].mainTokenId;
uint256 bakcTokenID = _pairs[i].bakcTokenId;

Position storage position = nftPosition[BAKC_POOL_IDI]L
L, bakcTokenID];

require(nftContracts[mainTypePoolId].ownerOf(mainTokenId)
L, == msg.sender, "Main Token not owned by caller");

require(nftContracts[BAKC_POOL_ID].ownerOf (bakcTokenID) ==
L, msg.sender, "BAKC Token not owned by caller");

uint256 rewardsToBeClaimed = _claim(BAKC_POOL_ID, position
L, , _recipient);

emit ClaimRewardsPairNft(msg.sender, rewardsToBeClaimed,
L, mainTypePoolId, mainTokenId, bakcTokenID);

25

FINDINGS & TECH DETAILS

696 1
697 }

As happened already in the HAL-01 issue, the mainToBakc and bakcToMain
mappings are not validated during the claimBAKC() call.

Proof of Concept:

User1l with the mock address 0x0000000000000000000000000000000000000101
owns the BAYC NFT #7337 AND BAKC NFT #851.

User2 with the mock address 0x0000000000000000000000000000000000000102
owns the BAYC NFT #8523.

1. User1 commits BAYC #7337 and BAKC #851 and stakes 100 Ape Coins in
the BAKC pool through the depositBAKC() function:

contract_ApeCoinStaking.depositBAKC([(7337, 851, 100_000000000000000000

)1, [1, {'from': useri1})

2. Some time passes, userl has accrued a lot of Ape Coin rewards.

3. Userl sells his BAKC #851 to user2.

4. User2 which already owned BAYC #8523, claims the Ape Coin rewards
of the BAKC #851 by calling the claimBAKC() but using his own BAYC
#8523 as its pair.
contract_ApeCoinStaking.claimBAKC([(8523, 851)], [], user2.address
, {'from': user2})

5. User2 has stolen the Ape Coin staked by userl plus the rewards
(rewards are intended as user2 now owns the BAKC NFT).

26

FINDINGS & TECH DETAILS

Calling -> contract_ApeCoinStaking.depositBAKC([(7337,
Transaction sent: O0x5bdf03404dc4afe8f6257d 4a570cf04
Gas price: 0.0 gwei Gas limit: &
ApeCoinStaking.depositBAKC confirmed

£51, 100 000000000000000000)7, [1, {'from': userl})
alfl70cbc980959c4e6desSTocedf4f

contract_ApeCoinStaking.stakedTotal (userl) -> 100

Calling -> chain.sleep (110889302
Calling -> chain.mine {1}

SLEEPING UNTIL THE FIRST Q1 STARTS

contract_ApeCoinStaking.pendingRewards (0, userl, 0) -> 0O

Calling -> chain.sleep (86400%S0) - -
Calling -> chain.mine (1) SLEEPING 3 MONTHS

contract_ApeCoinStaking.stakedTotal (userl)
contract_ApeCoinStaking.stakedTotal (userl)
contract_ApeCoin.balanceOf (userl) -

contract_ApeCoin.balanceCf (user2) -> 100000000000000000000

Calling -> contract KEN.transferFrom(userl.address, user2
Transaction sent: 0x574b9a%497c4271a57d0e53 b4flfea%aff40

Gas price: 0.0 gwei Gas limit: €
EEN.transferFrom confirmed Block: 1

Calling -> contract_ApeCoinStaking.claimBAKC ([(8523, 851)] [1, user2.address, {'from': user2})
Transaction sent: (OxZacabalSe5S50ed45f43 5e02f5c8568b5fages077 T79836e3b6bT3e
Gas price: 0.0 gwei Gas limit
ApeCoinStaking.claimBAEC confirmed Block: 15

contract_ApeCoinStaking.pendingRewards (3, userl, 851) -> 0O
contract_ApeCoinStaking.stakedTotal (userl) -> O

contract_ApeCoinStaking.stakedTotal (userz) -—> 100000000000000000000
contract_ApeCoin.balanceCf (userl) -> 0
contract_ApeCoin.balanceOf (user2) -> 1342345555999999959555500

Risk Level:
Likelihood - 5
Impact - 5
Recommendation:

It is recommended to validate that the NFTs passed to the claimBAKC()
function call are paired.

Remediation Plan:

SOLVED: The Horizen Labs team solved the issue. The ApeCoinStaking smart
contract now verifies that the NFT IDs passed to claimBAKC() are correctly
paired.

FINDINGS & TECH DETAILS

3.4 (HAL-04) APE COINS STAKED AND
ACCRUED REWARDS CAN BE STOLEN FROM
THE BAKC POOL IF THE BAKC ID @ IS
TRANSFERRED - CRITICAL

Description:

As a fix to the HAL-02 issue, the following update was done in the
_claimPairNft() function:

699 function _claimPairNft(uint256 mainTypePoolId, PairNft[] calldata
L, _pairs, address _recipient) private {

700 for(uint i; i < _pairs.length; ++i) {

701 uint256 mainTokenId = _pairs[i].mainTokenId;

702 uint256 bakcTokenId = _pairs[i].bakcTokenId;

703

704 Position storage position = nftPosition[BAKC_POOL_ID][
L, bakcTokenId];

705

706 require(nftContracts[mainTypePoolId].ownerOf(mainTokenId)
L, == msg.sender, "Main Token not owned by caller");

707 require(nftContracts[BAKC_POOL_ID].ownerOf (bakcTokenId) ==
L, msg.sender, "BAKC Token not owned by caller");

708 require(mainToBakc[mainTypePoolId][mainTokenId]. tokenId ==
L, bakcTokenId, "The given main NFT is not paired with given BAKC
L NFT");

709

710 uint256 rewardsToBeClaimed = _claim(BAKC_POOL_ID, position
L, , _recipient);

711 emit ClaimRewardsPairNft(msg.sender, rewardsToBeClaimed,
L, mainTypePoolId, mainTokenId, bakcTokenId);

712 3}

713 }

This is also exploitable but only with the BAKC #0@ (BAKC collection,
unluckily, starts on this 1ID). The exploit is possible because
the mainToBakc[mainTypePoolId][mainTokenId].tokenId mapping will be

28

FINDINGS & TECH DETAILS

initialized with @ by the Solidity compiler.

On the other hand, note that initially it can only be exploited with BAKC
#0. But later on, after some NFT uncommitments, it may happen with any
NFT ID, as the smart contract does not “reset/delete” the mainToBakc
[mainTypePoolId][mainTokenId] mapping after an NFT uncommitment, the
contract just sets mainToBakc[mainTypePoolId][mainTokenId].isPaired to
false.

Proof of Concept:

User1l with the mock address 0x0000000000000000000000000000000000000101
owns the BAYC NFT #7337 AND BAKC NFT #0.

User2 with the mock address 0x0000000000000000000000000000000000000102
owns the BAYC NFT #8523.

1. User1l commits BAYC #7337 and BAKC #0 and stakes 100 Ape Coins in
the BAKC pool through the depositBAKC() function:

contract_ApeCoinStaking.depositBAKC([(7337, 0, 100_000000000000000000

)1, [1, {'from': userl})

2. Some time passes, userl has accrued a lot of Ape Coin rewards.

3. Userl sells his BAKC #@ to user?2.

4. User2 which already owned BAYC #8523, claims the Ape Coin rewards
of the BAKC #0 by calling the claimBAKC() but using his own BAYC
#8523 as its pair.
contract_ApeCoinStaking.claimBAKC([(8523, @)], [], user2.address,
{'from': user2})

5. User2 has stolen the Ape Coin staked by userl plus the rewards
(rewards are intended as user2 now owns the BAKC NFT).

29

FINDINGS & TECH DETAILS

Calling -> contract ApeCoinStaking.deposit
Transaction sent: 0Ox353 i
Gas price: 0.0 gwei Gas limit: &0
ApeCoinStaking.depositBAEC confirmed

BAKC ([(7337, 0, 100 000000000000000000)], [1, {'from': userl})
329626699202645331dbe22156a2d8491171997

Gas used: 145 4 (0.02%)

contract_ApeCoinStaking.stakedTotal (userl) -> 100000000000000000000

Calling -> chain.sleep(l11063034)
Calling -> chain.mine (1

contract_ApeCoinStaking.pendingRewards (0, userl, 0) -> 0

Calling -> chain.sleep (36400%50)
Calling -> chain.mine {1

contract ApeCoinStaking.pendingRewards (3, userl, 0) ->
contract_ApeCoinStaking.stakedTotal (userl) -> 100000000000000000000
contract_ApeCoinStaking.stakedTotal (useri) -> 0
contract_ApeCoin.balanceOf (userl) -> 0
contract_ApeCoin.balanceOf (user2) -> 100000000000000000000

Calling -> contract KEN.transferFrom(userl.address, userZ.address ,
Transaction sent: Ox437£47 =e2 TceTe2034£fTel Sbalel
Gas price: 0.0 gwei Ga Nonce: 2
KEN.transferFrom confirmed Gas used: 37219 (0.01%

Calling -> contract_ ApeCoinStaking.claimBAKC([(8523, 0)1, [], userZ.address, {'from': user2})
Transaction sent: O0x038b71767b480718a0df995£735e320b244bdd2aas4441da%3084c4ff85cdf2a

Gas price: 0.0 gwei Gas limit: &0 0 NHonce

ApeCoinStaking.claimBAKC confirmed Block: 154113852 Gas used: 133315 (0.02%)
contract_ApeCoinStaking.pendingRewards (3, userl, 0) -> 0
contract_ApeCoinStaking.stakedTotal (userl) -> 0
contract_ApeCoinStaking.stakedTotal (userZ) -> 100000000000000000000
contract_ApeCoin.balanceOf (userl) -> 0
contract ApeCoin.balanceOf (user2) -> 1342345959595595559555500

Risk Level:

Likelihood - 5
Impact - 5

Recommendation:

It is recommended to validate that the NFTs passed to the claimBAKC()
function call are paired. On the other hand, special care should be taken
with the BAKC #@ as the mainToBakc[mainTypePoolId][mainTokenId] mapping
will be initialized with that value.

Remediation Plan:

SOLVED: The Horizen Labs team solved the issue. The ApeCoinStaking smart
contract checks now that the NFT IDs passed to the claimBAKC() are
correctly paired.

FINDINGS & TECH DETAILS

3.5 (HAL-05) APE COINS STAKED AND
ACCRUED REWARDS CAN BE STOLEN FROM
THE BAKC POOL IF THE BAKC ID @ IS
PAIRED WITH THE BAYC/MAYC WITH ID
Qa -

Description:

In the case that a user pairs the BAYC/MAYC #0 with the BAKC #@ these
mappings will take the following values:

mainToBakc[1][@].tokenId ==

bakcToMain[@][1].tokenId ==

In order to perform a withdrawal or a claim the following require
statements should be passed:

Listing 8: ApeCoinStaking.sol (Lines 800,801,802,805)

792 function _withdrawPairNft(uint256 mainTypePoollId,
L, PairNftWithAmount[] calldata _nfts) private {

793 for(uint i; i < _nfts.length; ++i) {

794 uint256 mainTokenId = _nfts[i].mainTokenId;

795 uint256 bakcTokenId = _nfts[i].bakcTokenId;

796 uint256 amount = _nfts[i].amount;

797 address mainTokenOwner = nftContracts[mainTypePoolId].
L, ownerOf (mainTokenId);

798 address bakcOwner = nftContracts[BAKC_POOL_ID].ownerOf
L, (bakcTokenId);

799

800 require(mainTokenOwner == msg.sender || bakcOwner ==
L, msg.sender, "At least one token in pair must be owned by caller");

801 require(mainToBakc[mainTypePoolId][mainTokenId].
L, tokenId == bakcTokenId

802 && bakcToMain[bakcTokenId][mainTypePoolId]. tokenId
L, == mainTokenId, "The provided Token IDs are not paired");

803

804 Position storage position = nftPosition[BAKC_POOL_ID]L[

L, bakcTokenId];

31

FINDINGS & TECH DETAILS

805
L

806

807 if (amount == position.stakedAmount) {

808 uint256 rewardsToBeClaimed = _claim(BAKC_POOL_ID,
L, position, bakcOwner);

809 mainToBakc[mainTypePoolId][mainTokenId] =
L, PairingStatus (@, false);

810 bakcToMain[bakcTokenId][mainTypePoolId] =
L, PairingStatus (@, false);

811 emit ClaimRewardsPairNft(msg.sender,

L, rewardsToBeClaimed, mainTypePoolId, mainTokenId, bakcTokenId);

812 3

813 _withdraw (BAKC_POOL_ID, position, amount,
L, mainTokenOwner);

814 emit WithdrawPairNft(msg.sender, amount,
L, mainTypePoolId, mainTokenId, bakcTokenId);

815 3}

816 }

748 function _claimPairNft(uint256 mainTypePoolId, PairNft[]
L, calldata _pairs, address _recipient) private {

749 for(uint i; i < _pairs.length; ++i) {

750 uint256 mainTokenId

751 uint256 bakcTokenId

752

753 Position storage position = nftPosition[BAKC_POOL_ID]L
L, bakcTokenId];

754

755
L

756
Ly

757
L

758
Ly

759

760 uint256 rewardsToBeClaimed = _claim(BAKC_POOL_ID,
L, position, _recipient);

_pairs[i].mainTokenId;

_pairs[i].bakcTokenId;

761 emit ClaimRewardsPairNft(msg.sender,
L, rewardsToBeClaimed, mainTypePoolId, mainTokenId, bakcTokenId);

32

FINDINGS & TECH DETAILS

762 1
763 }

Considering that all the mappings are initially set to @ by the compiler:
mainToBakc[2][@].tokenId == @
bakcToMain[@][2].tokenId == @

This means that if the BAYC #@ is paired with the BAKC #0 the user with
the MAYC #0 would be able to steal the staked Ape Coins and the accrued
rewards.

Proof of Concept:

contract BAYC.ownerOf(0) -> O
contract MAYC.ownerQf (0) -> O
contract KEN.ownerOf (0) -> 0

Calling -> contract MApeCoinStaking.depositBAKC([(0, 0O, 100 123456785012345678)], [], {'from': userl})
Transaction sent: 0xSf23beZbfzZe6z0f2)1ef5001a7dl848d1f1ff5c8d2ch07e93535cb5935
Gas price: 0.0 gwel Gas limitc: &0 Honce :
ApeCoinStaking.depositBAKC confirmed Block: 15626039 Gas used: 126603 (0.02%)

contract_ ApeCoinStaking.stakedTotal (userl) -> 100123436T89012345678

=]

contract ApeCoin.balanceOf (userl) -> 0

contract ApeCoin.balanceOf (userd) ->

=]

Calling -> contract_ RApeCoinStaking.withdrawBREC([], [(0, O, 100_123456789012345678)], {'from': user4})
Transaction sent: 0Oxed4cf7858f65afdbTb38e7d7e52d70bbalTalls el c/4a9305cI51d5ai5easl _
Gas price: 0.0 gweil Gas limit: &€00000000 Honce: 0
ApeCoinStaking . withdrawBAKC confirmed Block: 15626040 Gas used: 52674 (0.01%)

contract_ApeCoinStaking.stakedTotal (userl) -—> 0
contract ApeCoin.balanceOf (userl) -> 0
contract ApeCoin.balanceOf (userd4) -> 100123456785012345678

Risk Level:

Likelihood - 5
Impact - 5

Recommendation:

It is recommended to add an extra check that checks the PairingStatus of
the mainToBakc and bakcToMain mappings.

33

FINDINGS & TECH DETAILS

Remediation Plan:

SOLVED: The Horizen Labs team solved the issue by adding the suggested
check.

34

FINDINGS & TECH DETAILS

3.6 (HAL-06) NFT HOLDERS CAN ALLOW
ANYONE TO STAKE INTO THE NFT POOLS
THROUGH THE USE OF A SMART
CONTRACT -

Description:

There are 3 different pools where only holders of an NFT can stake. These
are the Bored Ape Yatch Club pool, the Mutant Ape Yatch Club pool and the
Bored Ape Kennel Club pool.

These are the Ape Coin allocations for those pools:

BAYC Pool MAYC Pool BAKC Pool

47.105vm 19.06mMm 3.835mm

SAPE SAPE SAPE

These staking pools are designed to benefit the NFT holders as they get
access to a restricted staking pool.

In the ApeCoinStaking contract, the deposit and withdraw functions can be
called by another smart contract. This means that someone could create a
“ApeCoin delegator” smart contract where users can lend their BAYC, MAYC
and BAKC NFTs. These NFTs then could be used by the ApeCoin delegator
contract to stake in the ApeCoinStaking restricted pools. Users would
delegate their Ape Coins into the ApeCoin delegator contract, and this
contract would place the Ape Coins in the different restricted pools.

The ApeCoin delegator smart contract would keep a fee as the protocol fee,

35

FINDINGS & TECH DETAILS

the lenders could get another fee for lending their NFTs and the ApeCoin
delegator users would get Ape Coins as rewards from the restricted pools.

This scenario would not really benefit NFT holders, as this would
provide access to those restricted pools to a higher number of users.
The higher number of users, the lower the shares, hence, lower rewards
for the legit NFT holders.

Risk Level:

Likelihood - 5
Impact - 3
Recommendation:

It is recommended to restrict smart contracts from interacting with the
ApeCoinStaking contract.

Remediation Plan:

RISK ACCEPTED: The Horizen Labs team accepts this risk, as this approach
would also block multi-signature wallets.

36

FINDINGS & TECH DETAILS

3.7 (HAL-07) POOLS MAY GET LOCKED
AFTER AN EMPTY CLAIM - MEDIUM

Description:

An edge case has been found in the ApeCoinStaking contract where if no
ApeCoins are staked during a whole quarter or if pool.stakedAmount ==
at the end of a quarter, and a user performs an empty claim() call in the
first hour of the next quarter, the pool will get locked.

Users will still be able to deposit in the pool, but they will never be
able to withdraw their stake or claim their accrued rewards from that
pool.

Calling -> chain.sleep{3601)
Calling -> chain.=sleep(l)

Calling -> chain.sleep{3601)
Calling -> chain.=sleep(l)

Calling -> chain.sleep{3601)
Calling -> chain.=sleep(l)

Calling -> chain.sleep{3601)
Calling -> chain.=sleep(l)

Calling -> chain.sleep{3601)
Calling -> chain.=sleep(l)

Calling -> chain.sleep({3601)
Calling -> chain.=sleep(l)

Calling -> chain.sleep({3601)
Calling -> chain.=sleep(l)

Calling -> chain.sleep({3601)
Calling -> chain.=sleep(l)

Calling -> chain.sleep({3601)
Calling -> chain.=sleep(l)

Calling -> chain.sleep({3601)
Calling -> chain.=sleep(l)
Calling -»> contract_ApeCoinStaking.claimApeCoin(userl.address, {'from': userl})
Transaction sent: Oxbcéed4dfelddeaTl =4ff93b031a2bl4205461584a5dd301£3fc2889541
Gas price: 0.0 gwel Gas limit:
ApeCoinStaking.claimbpeCoin confirmed

File "<comsole>", line 550, in <module>

File "/fusr/local/lib/python3.8/dist-packages/brownie/network/contract.py", line 1665, in _ call__
return self.call (*args, block identifier=block identifier)

File "/fusr/local/lib/python3.8/dist-packages/brownie/network/contract.py”, line 1461, in call

raise VirtualMachineError (e} from Hone
VirtualMachineError: _Leyert

37

FINDINGS & TECH DETAILS

Recommendation:

It is recommended to disallow claiming a zero amount, for example:

224 function claimApeCoin(address _recipient) public {

225 updatePool (APECOIN_POOL_ID);
226
227 Position storage position = addressPosition[msg.sender];
228 uint rewardsToBeClaimed = _claim(APECOIN_POOL_ID, position,
L, _recipient);
229 require(rewardsToBeClaimed > @, "Nothing to claim”");
230
231 emit ClaimRewards(msg.sender, rewardsToBeClaimed, _recipient);
232 }

Remediation Plan:

SOLVED: The Horizen Labs team solved the issue in the Commit ID #6

38

https://github.com/HorizenLabs/grapes-staking/tree/d5a3a068a44c3cbbbe00069215dfc703a2ab366e

FINDINGS & TECH DETAILS

3.8 (HAL-08) UNSAFE TYPE CASTINGS -
LOW

Description:

Solidity 0.8 is introducing type checking for arithmetic operations,
but not for type castings. Although very unlikely, the following type
castings can overflow in the ApeCoinStaking contract:

583 function pendingRewards(uint256 _poollId, address _address, uint256
L, _tokenId) external view returns (uint256) {

584 Pool memory pool = pools[_poolId];

585 Position memory position = _poollId == @ ? addressPosition[
L, _address]: nftPosition[_poolId][_tokenId];

586

587 (uint256 rewardsSincelLastCalculated,) = rewardsBy(_poolld,

L, pool.lastRewardedTimestampHour , getPreviousTimestampHour (block.
L, timestamp));

588 uint256 accumulatedRewardsPerShare = pool.
L, accumulatedRewardsPerShare;

589
590 if (block.timestamp > pool.lastRewardedTimestampHour +
L, SECONDS_PER_HOUR && pool.stakedAmount != @) {
591 accumulatedRewardsPerShare = accumulatedRewardsPerShare +

L, rewardsSincelLastCalculated * APE_COIN_PRECISION / pool.
L, stakedAmount;
592 }
593 return uint256(int256 ((position.stakedAmount =*
L, accumulatedRewardsPerShare / APE_COIN_PRECISION)) - position.
L. rewardsDebt);
594 }

621 function _deposit(uint256 _poollId, Position storage _position,
L, uint256 _amount) private {

622 Pool storage pool = pools[_poolId];
623
624 _position.stakedAmount += _amount;

39

FINDINGS & TECH DETAILS

625 pool.stakedAmount += _amount;

626 _position.rewardsDebt += int256(_amount * pool.
L, accumulatedRewardsPerShare / APE_COIN_PRECISION);
627
628
629 }

674 function _claim(uint256 _poolId, Position storage _position,
L, address _recipient) private returns (uint256) {

675 Pool storage pool = pools[_poollId];

676

677
L

678
Ly

679

680 _position.rewardsDebt = accumulatedApeCoins;

681

682 if (rewardsToBeClaimed != @) {

683 apeCoin.safeTransfer(_recipient, rewardsToBeClaimed);

684 }

685 return rewardsToBeClaimed;

686 }

715 function _withdraw(uint256 _poolId, Position storage _position,
L, uint256 _amount, address _recipient) private {

716 Pool storage pool = pools[_poollId];

717

718 _position.stakedAmount -= _amount;

719 pool.stakedAmount -= _amount;

720
Ly

721

722 apeCoin.safeTransfer(_recipient, _amount);

723 }

40

FINDINGS & TECH DETAILS

Recommendation:

It is recommended to use the SafeCast library in the lines mentioned:

1 function toUint256(int256 value) internal pure returns (uint256) {

2 require(value >= @, "SafeCast: value must be positive");
3 return uint256 (value);
4%

1 function toInt256(uint256 value) internal pure returns (int256) {

2 // Note: Unsafe cast below is okay because ‘type(int256).max"
L, is guaranteed to be positive

3 require(value <= uint256(type(int256).max), "SafeCast: value
L, doesn't fit in an int256");

4 return int256(value);

5%

Remediation Plan:

SOLVED: The Horizen Labs team solved the issue and now uses the SafeCast
library to perform all the type castings.

41

FINDINGS & TECH DETAILS

3.9 (HAL-09) CONTRACT DOES NOT
ENFORCE THAT SETREWARDSPERTIMERANGE
IS CALLED IN A CORRECT ORDER - LOW

Description:

The function setRewardsPerTimeRange() sets time ranges with given rewards
per hour for a given pool:

361 function setRewardsPerTimeRange (
362 uint256 _poolld,
363 uint256 _amount,
364 uint256 _startTimestamp,
365 uint256 _endTimeStamp,
366 uint256 _capPerPosition) external onlyOwner
367 {
368 require (_poolId < 4, "Invalid poolId");
369 require (_startTimestamp < _endTimeStamp, "_startTimestamp
L, should be less than _endTimeStamp");
370 require(getMinute(_startTimestamp) == @ && getSecond(
L, _startTimestamp) == @, "_startTimestamp is not a whole hour”);
371 require(getMinute(_endTimeStamp) == @ && getSecond(
L, _endTimeStamp) == @, "_endTimeStamp is not a whole hour");
372
373 Pool storage pool = pools[_poolId];
374 uint256 hoursInSeconds = _endTimeStamp - _startTimestamp;
375 uint256 rewardsPerHour = _amount * SECONDS_PER_HOUR /
L, hoursInSeconds;
376
377 RewardsPerHourInRange memory next = RewardsPerHourInRange (
L, _startTimestamp, _endTimeStamp, rewardsPerHour, _capPerPosition);
378 pool.rewardsPerHourInRanges.push(next);
379 }

This onlyOwner function should be called in a correct order meaning that
first, for example, the rewards for the first quarter for the ApeCoin
pool should be set, then the second quarter etc.

42

FINDINGS & TECH DETAILS

The ApeCoinStaking contract should enforce that the initial timestamp of
the new range is equal to the end timestamp of the previous range. This
check is currently missing in the smart contract and is prone to human

errors.

Recommendation:

It is recommended to enforce in the setRewardsPerTimeRange() function
that the initial timestamp of the new range is equal to the end timestamp
of the previous range.

Remediation Plan:

SOLVED: The Horizen Labs team solved the issue and the setRewardsPerTimeRange
() function now checks that the _startTimestamp of the new range is
equal to the last endTimestampHour of the previous range.

43

FINDINGS & TECH DETAILS

3.10 (HAL-10) WITHDRAWAPECOIN
FUNCTION DOES NOT AUTOMATICALLY
CLAIM THE ACCRUED REWARDS -
INFORMATIONAL

Description:

In the ApeCoinStaking contract, the following functions claim the rewards
and withdraw the staked Ape Coins:

® withdrawBAYC()
® withdrawSelfBAYC()
® withdrawMAYC()
® withdrawSelfMAYC()
® withdrawBAKC()

The same logic is not implemented in the withdrawApeCoin() and
withdrawSelfApeCoin() functions. Users would withdraw their staked Ape
Coins, but to claim the accrued Ape Coin rewards, they would need an
extra call to the claimApeCoin() or claimSelfApeCoin() functions.

Recommendation:

It is recommended to also claim the accrued rewards when withdrawApeCoin()
and withdrawSelfApeCoin() functions are called.

Remediation Plan:

SOLVED: The Horizen Labs team solved the issue and now also claims the
accrued rewards when the withdrawApeCoin() and withdrawSelfApeCoin()
functions are called.

44

FINDINGS & TECH DETAILS

3.11 (HAL-11) MINIMUM DEPOSIT AMOUNT
CAN BE BYPASSED - INFORMATIONAL

Description:

In the ApeCoinStaking contract, there is a minimum amount of Ape Coins
that users can deposit into any of the pools. This amount is equal to 1
Ape Coin:

170 function depositApeCoin(uint256 _amount, address _recipient)
L. public {

171 require(_amount >= MIN_DEPOSIT, "Can't deposit less than 1
L, $APE");

172 updatePool (APECOIN_POOL_ID);

173

174 Position storage position = addressPosition[_recipient];

175 _deposit (APECOIN_POOL_ID, position, _amount);

176

177 emit Deposit(msg.sender, _amount, _recipient);

178 }

This minimum deposit restriction can be easily bypassed by doing a
withdrawal right after the deposit, leaving a small amount staked.

Proof of Concept:

1. Userl stakes 1_000000000000000000 Ape Coins into the Ape Coin pool.
2. Userl withdraws 999999999999999999 Ape Coins from the Ape Coin pool.
3. contract_ApeCoinStaking.stakedTotal(user1)-> 1

45

FINDINGS & TECH DETAILS

Calling -> contract ApeCoinStaking. dep051tnpeC01ntl 000000000000000000 userl address, {'from': userl})
Transaction sent: OxlSSfdaS4edab 3a37 876
Gas price: 0.0 gwei Gas limit: NDnce
ApeCoinStaking.deposithApeCoin confirmed Block: 154

contract_ApeCoinStaking.stakedTotal (userl) -> 1000000000000000000

Calling -> contract ApeCDlnStaklng w1thdrawhpeC01n1999999999999999999 userl.address, {'from': userl})

Transaction sent: 0x23

Gas price: 0.0 gwei Gas llmlt. &
ApeCoinStaking.withdrawApeCoin confirmed Block: 15432940 Gas used: 46577 (0.01%)
contract_ApeCoinStaking.stakedTotal (userl) -> 1

Recommendation:

Consider unstaking all the tokens deposited when the remaining amount of
Ape Coins staked is lower than the MIN_DEPOSIT amount.

Remediation Plan:

ACKNOWLEDGED: The Horizen Labs team acknowledged this finding.

46

FINDINGS & TECH DETAILS

3.12 (HAL-12) LACK OF AN
EMERGENCYWITHDRAW FUNCTION -
INFORMATIONAL

Description:

As some issues found in the ApeCoinStaking contract caused some funds to
be locked in the smart contract and also taking into consideration the
high reputation of the project, we believe that it may be useful to:

1. Keep track offchain of all the deposits/stakes/withdrawals/accrued
rewards.
2. Add an emergencyWithdraw() function with an onlyOwner modifier that

is protected behind a multisignature wallet.

By implementing this, in case of any possible rounding/calculation issue
that may cause any funds to be locked, the emergencyWithdraw() function
could be used to retrieve the locked funds and assign them accordingly
to the affected users.

Recommendation:

It is recommended to:

1. Keep tracking offchain of all the deposits/stakes/withdrawals/accrued
rewards.

2. Add an emergencyWithdraw() function with an onlyOwner modifier that
is protected behind a multisignature wallet.

Remediation Plan:

ACKNOWLEDGED: The Horizen Labs team acknowledged this finding.

47

FINDINGS & TECH DETAILS

3.13 (HAL-13) MISSING REQUIRE
STATEMENT IN WITHDRAW FUNCTION -
INFORMATIONAL

Description:

In the ApeCoinStaking contract, the private _withdraw() function is called
every time a user wants to withdraw their Ape Coins from a staking pool:

170 function _withdraw(uint256 _poolId, Position storage _position,
L, uint256 _amount, address _recipient) private {

171 Pool storage pool = pools[_poolId];

172

173 _position.stakedAmount -= _amount;

174 pool.stakedAmount -= _amount;

175 _position.rewardsDebt -= (_amount * pool.
L, accumulatedRewardsPerShare).toInt256();

176

177 apeCoin.safeTransfer(_recipient, _amount);

178 }

Although, this function does not check if the _amount is actually <= than
the _position.stakedAmount. When this _amount is higher, the EVM will

revert with an overflow error.

Recommendation:

It is recommended to add a require statement that checks if the _amount is
actually <= than the _position.stakedAmount to avoid the overflow error.

Remediation Plan:

SOLVED: The Horizen Labs team solved the issue by adding the suggested
require statement.

48

AUTOMATED TESTING

AUTOMATED TESTING

4.1 STATIC ANALYSIS REPORT

Description:

Halborn used automated testing techniques to enhance the coverage of
certain areas of the smart contracts in scope. Among the tools used was
Slither, a Solidity static analysis framework. After Halborn verified
the smart contracts in the repository and was able to compile them
correctly into their ABIS and binary format, Slither was run against the
contracts. This tool can statically verify mathematical relationships
between Solidity variables to detect invalid or inconsistent usage of the
contracts’ APIs across the entire code-base.

Slither results:

ApeCoinStaking.sol

50

AUTOMATED TESTING

#78) is never initialized.

stakedToral

- 1-&:(,-:)':5 aking. getStakes (address,uint2s6)

(contracts/ApeCoinstaking. s014541-555)
s ess,uint256) (concr:

- 56, address, uint2se) =
Za : Nft (uinc256 ngleNfr(]) (concx
- a Paione: 256 ®)
- NET (uinc256, uinc256(], address) 14673
- “claimPaizh 6 PaizNEc(), adiress) Lpees-ae)
- i address) 18705-724)
- = s n 13726-748)
Reference: hutp: S p— Lither/wiki/Detect 1 ables
. aa perforns a multipl on the result of a division:
(0 / pool B a * 24) 1%
Reference: https://github
= D 18629) is a local veriable never inivialized
= 1. is a local varisble never initialized
= 1,addzess) .i £675) 12 8 local vazisble mever dnicialized
= 1,addzess) .3 1) is a local variable never initialized
~ PaizNEt(],address) .i + 1ocal variable never initialized
~ #618) is a local variable never initialized
Reference: https://
ERCT21. ¢ 1/ERCT21 ignores return value by IER (_rag), £xom, (node_module
1-a0141017412)
Reference: hrcps:// icher/wiki
Variable 'ERCT21. -zecval (node 1/ERCT21.301#401) " in ERCT21._ (node
/contzacts/coken/ERCT21/ERCT21 . 9014394-416) ially used before retval == (node concracts/ 1.3014402)
Variable 'ER -zeason (node 1/ERC721.501#403) ' in ERCT2L. a (node s
/contzacts/token/ERCT21/ERCT2L . 301$394-316) 11y used before o (node_ ——— ERCT21.3014404)
Variable 'ERC a bytes) _reason (node_s 21/ERC721. 5014403) in ERCT2L. a da by (node
/con\:xacc:/r,oken/lﬂc72)/£kc7zl 501#394-416) potentially used before reverc (2 + 10ad (zeason)) (node_ /ERCT21.301$409)
Reference: hetps:. ables
Reencrancy in m 14726-748) :
External call:
- rewardsToBeClaimed = _claim (BAKC_BOOL_ID, bak: 1#740)
- revurndate 1 feERC20: low-level call failed) (noder 15110
- (success, revurndata) = target.call(value: value} (data) (node. /utils/Add 14157
- 1%
External calls sending ecth:
- rewardsToBeClaimed = _claim (BAKC_BOOL_ID, 14740)
(success, revamndata) = target call(value: value} (date) (ode mod /utils/Add 14157)
tate variables writte:
- bakcToliain bekcTokenld] [mainTypePool1d) .isPaired = false (contracts/ApeCoinStaking. so1#742)
false 14741
Reference: https://github. lities-2
Reentrancy in _claimife 01, address)
External calls:
- _claim(_pool _recipient))
- zecurndata 1 + low-level call failed) (node s et .5014110)
(success, recurndata) = target.call(value: value) (daca) (node s weila/ 137
External calls sending ethi
- = _claim(_pool _xe t673)
- (success, returndata) = target.call(value: value) (data) (node concracts/ #137)
Event emitted after cthe call(s):
- _pool: tokenTd) +650)
Reencrancy in clasmpaione; PasrNfe(],address) 4684-657) ¢
External call:
- rewardsToBeClaimed = _claim(8AKC_BOOL_ID, _recipient) 15
- recurndate 1 £eERC20: lou-level call failed) (node et 14110
- (success, returndata) = target.call(value: value) (data) (node /ucils/Add 14157)
- (15
External calls sending cch:
- rewardsToBeClaimed = _claim (BAKC_BOOL_ID, _recipient 15604
T eucoess, recuiadata) = chroec el valnes Tanac) (dace) (node /utils/Add 14157
Event emitted after cthe call(s)
N a 1 1#655)
Reentrancy in xe 1ente())
External call:
- _poolIa
- revurndata 1 £eERC20: Lov-level calt taided) (node .s014110)
- a , _amo 1#61
(sucoess, returndata) = target.call(value: value} (iaea) (node motuies, Bopensepperin/constact /st ila/Addzess s014137)
External calls sending cth
(success, Tevurndata) = target.calllvalue: value) (date) (node_modules/@openzeppelin/contracts/utils/Address. s01#137)
Event emitted after the call(s):
b o _pooiza, <okenTd) #624)
Reentzancy in . n :
External call:
- - poor_x s
[——— 1 + lou-level call failed) (node s s $110)
- , _amounc) te13)
uccess, returndata) = target.call(value: value) (data) (node conczacts/ #137)
External calls sending ech
o - pooL._1 5
- (success, recurndata) - target.call(value: value) (daca) (node concracts/ #157)
Event emitted after cthe call(s):
- T)
Reencrancy in P leNtt (), address) 14709-724) ¢
External call.
- _claim(_poolId, _recipient)
- recurndate 1 : low-level call failed) (node s 14110
T euccess, rerurndaca) = tasget.cald ivaines vatae) (dace) (node /utils/Add 14157)
¢ 15
External calls sending cch:
_clain(_recipient) 1#718)
- (success, returndata) = target.call{value: value} (data) (node /utils/Add 14157
Event emitted after the call(s):
- dex,_poolld tokenId) 14719)
Reentrancy in i 1eNEC (), address) 1$708-724) :
External call:
- _claim(_pool1d, _setpient) +718)
- zevurndata 1 i heved cal faited) (nod s .5014110)
T ouccess, serurndaca) = cergut.cali vatue: varees (dace) (node.s mocules/openzeppelin/convracts/utils/Addzess. 5014137)
- _vithdzan _poolTd, posivion, ambuns, recipient) (contracts/ApeCoinstaking. solf721
Turndata Loe-ioves eald fatled) (node .5014110)
 imeCoin.sateTeanster (recipiens, amount) (conéraces/ApaCoinssaring. so1$708
- (success, revurndata) = target.callivalue: value) (data) (node_modules/@openzeppelin/contracts/utils/Address.s01#137)
External calls sending eth:
_claim(_pool _recipient) #718)
- (success, recuzndata) = target.call(value: value) (daca) (node weila/ 137
- _wichdzaw _recipient) #721)
- (success, returndata) = ctarget.call(value: value) (daca) (node s weila/ 137
Event emitted after cthe call(s):
Reentrancy in P n :
External call.
- rewardsToBeClaimed = _claim(SAKC_EOOL #720)
- recurndate 1 £eERC20: low-level call failed) (node 14110
- (success, returndata) = target.call(value: value} (data) (node /ucils/Add 14157)
- (15
External calls sending cch:
- rewardsToBeClaimed = _claim (8AKC_POOL_ID, 14740)
- (success, returndata) = target.call{value: value} (data) (node /utils/Add 14157
Event emitied after the call(s):
a 14743)
[— K « m 18726-742) ¢
xternal call
- rewardsToBeClaimed = _claim (BAKC_POOL_ID, bakc 14740)
- zevurndata 1 ERC20: low-level call failed) (node .501#110)
- (success, revurndata) = target.call{value: value) (data) (node_modules/@openzeppelin/contracts/utils/Address.01#137)
- 13668
- :_POOL_ID, #745)
- zecurndata 1 £eERC20: low-level call failed) (node s .5014110)
- apeCoin.safeTransfer (_recipient, amount) (contracts/ApeCoinStaking.sol#706)
- (success, returndata) = target.calllvalue: value) (data) (node_modules/@openzeppelin/contracts/utils/Address.s01#137)
External calls sending eth
- rewardsToBeClaimed = _claim(BAKC_POOL #740)
- (success, returndata) = target.call(value: value) (daca) (node weila/ 137
- -_poor_ #735)
- (success, returndata) = target.call(value: value) (data) (node concracta/ #137)
Event emitted after cthe call(s):
N Nt #736)
Reentrancy in $215-222) :
External call.
- {_poor._o, _recipient) 421
- recurndate T ERC20¢ lou-level call failed) (node s 14110
- (success, returndata) = target.call(value: value) (data) (node contracts/utils/Add 14157)
- ¢ 18
External calls sending cch:
- R {_poor, _recipient) 1421
- (success, returndata) = target.call(value: value} (data) (node /utils/Add 14157
Event emitted after cthe call(s):
- a _recipient) 14221)
Reentrancy i PaszNec(PairNec(), address) 1#270-274) :
Excernat coll
- _clainPaizifs BAIC POOL ID, baycPairs, recipient) (contracts/Apecoinstaking.seli212)
- revurndata 1 low-level call failed) (node .s01#110)
T ouccess, recurndaca) = target.cald ivarue: varoer (dace) (node_modules/@openzeppelin/ contracts/utils/Address . 301§137)
- 1#668
- _cleingeiziec (AIC_FoOL 10, naycEaizs, fecipien) (contiects/hpeCoinsStaking.sal#2rd)
ndata w-level call failed) (mode .5014110)

- (success, returndata)

= target.call(value:

etuer (dacar

1o
(node_modules/@openzeppelin/contracts/utils/Address . 501#137)
1668,

51

AUTOMATED TESTING

External calls sending eth:
- _claimPairNfc (BAYC_POOL_ID, baycPairs, recipient) (contracts/ApeCoinStaking.sol}272)

(contracts/ApeCoinstaking. 3014653-654)

- (success, returndata) = target.call(value: value) (data) (node. contracts/utils/add 14137)
- _clainPaisliEc (4AIC_FOOL ID, maycPaizs, recipient) (convraccs/ApeCoinstaking.soli213)
coess, returndata) all(value: value} (data) (node r /utils/Add 14157
Event emitied after the call(s):
1 1#655)
- _clainPairNfc {HAYCiPOO!.’IB,Jnay‘:Paxx!,ixecxpxenEY (contracts/ApeCoinStaking. 3014273
Reentrancy in aa 1$164-172) :
xternal call
A PECOIN_POOL_ID, _amount) 151
- revurndate 1 eERC20: low-level call failed) (node .s014110)
- , _amount) 1#613)
(sucoess, retumndata) = tazget.call(value: value} (date) (node modu / Ada: 14157)
Exvernal calls sending cth
R N_POOL_ID, _amount)
I oucceas; recurndaca) = carzer.call ivatues vatue) (dace) (node, modules/Gopenseppelin/consraces/ucila/Address. so14137)
Event emitted afver che call(s):
- Deposit (msg.sender, _amount, recipient) (contracts/ApeCoinStaking.solfl7l)
Reentzancy in 1 n :
xternal calls:
- _GeposicPaizEt (BAYC_POOL ID, baycFairs) (contracts/ApeCoinStaking. sol4205)
ecurndata + low-level call failed) (node s et .5014110)
{success, sevurndaca) = tazget.call(valve: valus) (Gaca) (node weila/ 137
- _GepostuFaiaNiEs (HAYC BOOL ID, maycEaizs) (consracsa/ApeCoinstaking. 5514206)
ecurndaca = low-level call failed) (node s $110)
- , _amount) te13)
T (oaccess, evurndata) = carget cal (vatues value) (dacay (node.s concracts/ 137
External calls sending ech:
= _SepostuPairkes (SAIC_BOOL 1D, baycPaica) (eomtracea/doeColnStaring.sold20%)
success, recurndata) = target.call(value: value) (daca) (no contraces/utt +157)
- _ceposicPainifc (MAIC HOCL ID, maycPaizs) (contzaces/EpeCoinStaking. ir206)
(success, returndata) = target.call(value: value) (data) (node contracts/utils/add 157
Event emitted after cthe call(s)
N a P 14647)
-_depositeaisiis (MAXC POCL ID, maycrairs) (contzacts/ApeCoinStaking. o14206)
Reencrancy in
External cal!
- mmmumscom FOOL_ID, position, smount, recipient) (contracts/ApeCoinstaking. sol#294)
curndata low-level call failed) (node 15110
- epecoin sateTzanstex xec)p)en\:,_amaun\:) eontraces/ApeCotnsearing. so1#706)
{suceeas, recurndaca) = cazger.call(value: value) (dace) (aode /utils/Add 14157
External calls sending et
_withdzaw (APECOIN_POOL, m,pommn, _amount, _recipient) (contracts/ApeCoinStaking.so1#294)
- (success, zevurndata) = target.call(value: value} (data) (node_modu /utils/Add 14157)
Event emitted after the call(s):
- Withdraw (msg. sender,_amount,_recipient) (contracts/ApeCoinStaking.sol#296)
Reentrancy in 0 m
External calls:
- _vithdravpaizNEt (BAYC_FOOL I, baycPaizs) (contracts/ApeCoinStaking. solf344)
curndata Lor-level cans cailed) (noce.s .501#110)
L imeCoin.safeTeanster { recipiens, amount) (conéraces/ApeCoinssaring. so1$708
T ccens, sevurndaca) = sarpee.caT vatuet vaieer (date) (node. moduses/Bopenseppelin/contaces/ucila/Address. so14137)
- _ 15668)
- _vithdzavPaizNEC (4RIC_POOL_ID,_maycrairs) (concracta/ApeCoinSoaking . soif315)
- recurndaca = low-level call failed) (node s .2014110)
L eeoin sateTInpter | Rectpiuncy Amcums) (SoDeracea/ApACoIoaTaIg. bo#706)
- (success, recurndata) = target.call(value: value) (data) (node s weila/ 137
- ¢ 3
External calls sending ech:
- _withdrawPaizNfc (SBAYC_POOL_ID, baycPairs) (contracts/ApeCoinStaking.solé344)
(success, recurndata) - ctarget.call(value: value) (daca) (node concracts/ #137)
- _wichdzawPalzNEt (MAYC_BOOL ID, maycPaizs) (contacts/ApeCoinStaking.soltsss)
(success, returndata) - ctarget.call(value: value) (data) (node contracts/utils/add 14137)
Event emitted after che call(s):
N . 14743)
- _withdrawPaizNFt (MAYC_POOL_ID, maycPairs) (contracts/ApeCoinStaking.3ol#345)
- a 1a 14726)
- _withdrawPaizNft (MAYC_POOL_ID, maycPairs) (contracts/ApeCoinStaking.3ol#345)
Reference: https:/7github 1
uses timestamp for comparisons
Dangerous comparisons:
o < pool 15
1ength 13359
18406)
1#202)
1#203)
uses timestamp for comparisons
#421)
- block.vimestamp <= pool.lastRewardedTimestampHour + SECONDS_PER_HOUR (contracts/ApeCoinStaking.sol#422)
- > #428)
- #437)
15takes (addzess) uses timestamp for comparisons
Dangezous compastsons
-1 length #a26)
Tl scomene lengtn #as1)
- iTscope 1 < Lengen #456)
uses timestamp for comparisons
Dangerous comparisons:
- block.timestamp > pool.lastRewardedTimestampHour + SECONDS_PER_HOUR && pool =0
. 3 #651-657) uses timestamp for comparisons
bangerous comparisons:
- require (so0l (_amount + pools(_poolld] _poo11d] 't stake more than cap amount)
Reference: heeps://github s,
ERCT21. ¢ da b (node 1/ERCT21. uses assembly
~ INLINE ASH (node_ contract /ERCT21.501$408-410)
Address.verifyCallResult (bool,bytes, string) (node_module: contracts/utils/Add 14201-221) uses assembly
~ INLINE ASH (node_ Contract 1s/Addr; 1$213-216)
Reference: https: %)
Different versions of Solidity is used:
ed: [10.8.10%, '°0.8.0%, '°0.8.1']
- 144)
- Contracts/t IERC20. s0144)
- 144)
- 134)
- 154)
- /IERCT21.50184)
- s Lso1#4)
- 184)
- 144)
T 40,81 (nodemodules/Gopenseppelin/contracts/urils/Address. soife)
- %0.8.0 (node_modules/@openzeppelin/contracta/utils/Context. 301#4)
- %0.8.0 (node_modules/Gopenzeppelin/contracta/utils/Stzings. s01#4)
- %0.8.0 (node_: contzacta/uti 1)
- %0.8.0 (node. contracts/uti)
5.10 (contracts/ApeCoinStaking. 30143)
Reference: hetps:// ieher/wikl
1 (ode contraces/utils/ 4$85-87) i3 never used and should be removed
ndaress. Liso by (node Ls/Ada #114-120) is never used and should be removed
Raas 11 (address, b (node contracts/utils/Add 14174-176) is never used and should be removed
naa 11 (address, b (node 1s/Ada is never used and should be removed
naas 11 (address, b (node contracts/utils/Add 14147-145) is never used and should be removed
naas 11 (address, b (node 3 1s/Aqa 1#157-166) is never used and should be removed
[15/Ada: 1#60-65) is never used and should be removed
Context. magbata() (node_ contracts/utils/ 1521-23) is never used and should be removed
(node _ 1/ERCT21.501#303-317) is mever used and should be removed
ac (node_ ERC721.3014279-251) is never used and should be removed
femint (ada (Rode ERC721.5014247-249) is never used and should be removed
femint (ada by (node /ERCT21. is never used and should be removed
(TERC20, add (node_ e — 1$46-59) is never used and should be removed
£eER (TERC20, ad (node, -81) is never used and should be removed
£eER 1 (TERC20, aqa (node. 1461-68) is never used and should be removed
£eER zep. aa aa by byces32) (node_s -57) is never used and should be removed
Strings. (node_ 15/ 1#72-74) is never used and should be removed
Stzings. (node_ 15/ 1#41-52) is never used and should be removed
Sezin (node, 15/ 1#57-67) is never used and should be removed
Reference: https://github. = /wiki,
Pragna version®0.8.0 (node s #4) allows old versions
Pragna version®0.8.0 (node s R —t #4) allows old versions
Pragma version®0.8.0 (node r contracta/ #4) allous old versions
Pragma version®0.8.0 (node r contracts/ #4) allows old versions
Pragma version®0.5.0 (node r contracts/ JERCT21 no1#4) ataows cad verasons
Pragma version®0.5.0 (node r Es— /TERCTZ1 s0i44) ailous old versions
Pragma version®0.8.0 (node r contracts/; y; allows old versions
Pragma version®0.5.0 (node r contracts/; 1 allows old versions
Pragma version®0.8.0 (node r in/contracts/ #4) allous old versions
Pragma version®0.8.0 (node r in/contracts, #4) allous old versions
Pragma version®0.8.1 (node r s 1s/Addr, 4#4) allows old versions
Pragma version®0.8.0 (node r 18/ 134) allows old versions
Pragma version®0.8.0 (node r 18/ 134) allows old versions
Pragma version®0.8.0 (node r #4) allows old versions

Eregme versiono 0 0 (noae IER 1#4) allows old versions
Ex. 1% a version too recent to be trusted. Consider deploying with 0.6.12/0.7.6/0.8.7
ier6.5.10 15 met xecamnﬂea for deployment
Reference: hrtps://:)
Low level call in Add (node 1 1/par 1460-65):

success) = recipient.call(value: amounc) () (node s contzacta/ucsl
Low level call in Add: b 1s/Aqa: :

i

target.call(valu
Tow level call in 1 (ada

eiue) (date) (node. maduies Gopeneppelin contraces/ acile/addzess. soLFLST)
by (node x 1s/Address.s01$157-166)

11(data) (node_ 1s/Aqdress. s014164)
Tow level call in Add daress,b (node x Ada.
1(data) (node_ 1s/Address. s014191)
Refexence: meepers/aiemun. = /wiki, 1s

52

AUTOMATED TESTING

#59) 13 not in mixedCase

Function IERC20Bermit.DOMAIN SEPARATOR() (node modules

e— «_amount. = #164) is not in mixedCase
— 56, ad recipient #164) 1is not in mixedCase

[ae— ._amounc 1#177) 1s not in mixedCase

I— lenc(]) ._ntes 4185) 13 not in mixedCase

[I— 1enc(]) - nfes 1#193) is not in mixedCase

—) 1)._baycPairs 1$203) 1s not in mixedCase
—) 1) . _maycPairs 1$203) is not in mixedCase
— ._recipient 1#215) is not in mixedCase

Paraneter ApeCoinStaking. clainBAYC(uinc256 (], address) - nfcs (contracts/ApeCoinStaking.solt236) 13 not in mizedCase
Parameter ApeCoinStaking.claimBAIC(uinc256(],address) |_recipient (contracts/ApeCoinStaking. sol$236) 1s not in mixedCase
Paranecer 1) _ntes 13263) 12 noc in miedcess
Faraneter ADeCoinSTaKing.clamAIC(1ntZSe(), addreas) . nfea (contracra/ApeCoinStaking.solf2s2) i3 met in mixeacase
Parameter ApeCoinStaking. claimIAIC (uinc256(], address) |_recipient (contracts/ApeCoinStaking. sol#252) 13 not in mixedCase
Paranecer 1. _nres 13260) 12 not in minedcess

Parameter BaizNfe(] PairNfc[],address) . baycPairs (contracts/ApeCoinStaking.sol#270) is not in mixedCase
Parameter PaizNfe(] PaizNfc[],address) . maycPairs (contracts/ApeCoinStaking.s0l#270) is not in mixedCase

Parameter PaizNfe(] PaizNft[],address) . _recipient (contracts/ApeCoinstaking.sol§270) is not in mixedCase

Parameter Paizife(] PaizNft(]) ._bayoPairs 1#280) is not in mixedCase

Parameter PaizNee(] PaizNfe(]) ._maycPairs 1§280) is not in mixedCase

Parameter aa +_amount 1#250) is not in mixedCase

Parameter aa recipient #290) is not in mixedCase

[— = amount 1$303) is not in mixedCase

[—— 1,addzess) ._nfts 18311) is not in mixedCase

[—) adress) . _recipient (contzacta/ApeCoinStaking. solf3li) ia not in mixedCase

— 1)._ntes 319) is not in mixedCase

— 1,addzess) ._nfes #327) is not in mixedCase

F— 1 addzess) . secipient (contracts/ApeCoinStaking. 2034327) 1 o in mixedcase

F— 1)._ntes is not in mixedCase

F— 1 1)._baycPaizs #342) 1s not in mixedCase
F— 1 1) ._maycPaizs #342) 1s not in mixedCase
F—— . a +_poolId #356) is not in mixedCase

a—— . 6) . _amount. #357) 1s not in mixedCase

[ae—— 6) . _stacT: is not in mixedCase

—— Zenar: #359) 13 not in mixedCase

Parame: 1#360) 1s not in mixedCase

Farametes AbeCoinStaking. ramovelastTinaRange (WAR256) - PooLTd (sontracts/ApecotnSearing. S314576) 19 ot 1n mixcdCase

[I— -_poolId is not in mixedCase

— index 1#383) 1s not in mixedCase

— 3 «_poolld 1#394) 1is not in mixedCase

— 5 esen 1#394) 1is not in mixedCase

— 1#394) is not in mixedCase

Paxancrer ApeCoinsaxing.updatepool (1inc256) . _poolla eontrasea/Apacorngiakang. 2014419) iz not in mixedCase

— 1(acdress) _addr 447) is not in mixedCase

— 1 aurens 1#472) is not in mixedCase

Parameter ApeCoinStaking.getApeCoinStake (address)
Parameter ApeCoinStaking.getBaycStakes (address) .
Parameter ApeCoinStaking.getlaycStakes (address) .
Parameter ApeCoinStaking.getBakcStakes (address) . address (contracts/ApeCoinStaking.sol#S37) is not in mixedCase

_adaress (contracts/ApeCoinstaking.sol§508) is not in mixedCase

Parameter ddress, uint256) ._poolld (contracts/ApeCoinstaking.sol#568) is not in mixedCase
Parameter ddress, uint25€) ._address (contracts/ApeCoinStaking.solfS5€8) is mot in mixedCase

Parameter ddress, uint25€) ._tokenld (contracts/ApeCoinStaking.solfS€8) is mot in mixedCase

Reference: https://github. Ki/Detect

Varisble BAKC_POOL_ID 1#73) is too similar to - pooL_1D 1871)

Variable - rooL_ID 1#71) is too similar to " rooL_1D 1872)

Varisble i #151) is too similar to . =
eCoinstaking. s01§145)

Variable b #149) 15 too similar to N =
eCoinStaking. 501#150)

[slicher/wiki, lar

renounceOunership () should be declared external:

) (n contracts, #e1-63)
transferounership (address) should be declared external:
- Ounable.cranaferOumership (addzess) (node_modules s65-72)

) (node_modu! cont: 1/ERCT21.501478-81)

- ERC721.symbol() (node_n n 1/ERCT21. 501486-88)
SokenURI (uine2se) should be declaed extermal:
ERC721.tokenURI (uint256) (node_modules 1/ERCT21. 201493-98)
spprove (addzess, uint2e) should be declared cxvernal:
RC721.approve (address, uint256) (node_modules/ concracts/ 1/ERCT21.301$112-122)
sechppEovelEorALl (addxess bool) anoula be declered external:
1(address, bool) (node_modu 1/ERC721.3014136-138)
uamfexmmadaxes: sddress, uinc256) should be declared esternal:
ERCT: (node 1/ERCT21.501#150-159)
a showld be declared exvernal:
(node 1/ERCT21.501$164-170)
cnkenoimmexﬂ‘]lndexLaddx::ﬁ uint256) should be declared external:
(node_x 1 1£37-40)

\:nkenByIndex(mnciSG) should be declared external:
(node_modu: /ERCT21, 1352-55)
Gethl1Scakes (address) hovid be. dectared exvernal:

Reference: https://github. = /wiki/!

ApeCoinStakedVoting.sol
No issues found by Slither.

®* All the reentrancies flagged are false positives. All the NFT
contracts and the Ape Coin ERC20 contract are trusted contracts.
The code flow is never transferred to any other contract.

®* The weak PRNG flagged by Slither is a false positive, as the contract
does not use any random number.

®* No major issues found by Slither.

53

AUTOMATED TESTING

4.2 AUTOMATED SECURITY SCAN

Description:

Halborn used automated security scanners to assist with detection of
well-known security issues and to identify low-hanging fruits on the
targets for this engagement. Among the tools used was MythX, a security
analysis service for Ethereum smart contracts. MythX performed a scan
on the smart contracts and sent the compiled results to the analyzers to
locate any vulnerabilities.

MythX results:

ApeCoinStaking.sol

Report for contracts/ApeCoinStaking.sol
https://dashboard.mythx.io/#/console/analyses/29ce4258-96dc-4cfb-ac8l1-bB2973168830

Line SWC Title Severity Short Description

511 (SWC-110) Assert Violation Low A user-provided assertion failed.

ApeCoinStakedVoting.sol
Report for contracts/ApeCoinStakedVoting.sol
https://dashboard.mythx.io/$#/console/analyses/2f7d1003-953c-4793-b5£0-dS%cb9353ecad

Line SWC Title Severity Short Description

11 (SWC-108) State Variabkle Default Visibility Low State wariable wvisibkbility is not set.

®* The assert violation is a false positive.

®* There is a state variable <called apeCoinStaking in the
ApeCoinStakedVoting which visibility is not declared; hence it will
be declared as private by default when compiled.

®* No major issues found by MythX.

THANK YOU FOR CHOOSING

// HALBORN

	DOCUMENT REVISION HISTORY
	CONTACTS
	EXECUTIVE OVERVIEW
	INTRODUCTION
	AUDIT SUMMARY
	TEST APPROACH & METHODOLOGY
	RISK METHODOLOGY

	SCOPE

	ASSESSMENT SUMMARY & FINDINGS OVERVIEW
	FINDINGS & TECH DETAILS
	
	Description
	Proof of Concept
	Recommendation
	Remediation Plan

	
	Description
	Proof of Concept
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Proof of Concept
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Proof of Concept
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Proof of Concept
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Recommendation
	Remediation Plan

	
	Description
	Recommendation
	Remediation Plan

	
	Description
	Recommendation
	Remediation Plan

	
	Description
	Recommendation
	Remediation Plan

	
	Description
	Proof of Concept
	Recommendation
	Remediation Plan

	
	Description
	Recommendation
	Remediation Plan

	
	Description
	Recommendation
	Remediation Plan

	AUTOMATED TESTING
	STATIC ANALYSIS REPORT
	Description
	Slither results

	AUTOMATED SECURITY SCAN
	Description
	MythX results

