
Horizen Labs -
Grapes Staking

Smart Contract Security Audit

Prepared by: Halborn

Date of Engagement: August 15th, 2022 - September 30th, 2022

Visit: Halborn.com

https://halborn.com

DOCUMENT REVISION HISTORY 5

CONTACTS 6

1 EXECUTIVE OVERVIEW 7

1.1 INTRODUCTION 8

1.2 AUDIT SUMMARY 8

1.3 TEST APPROACH & METHODOLOGY 8

RISK METHODOLOGY 9

1.4 SCOPE 11

2 ASSESSMENT SUMMARY & FINDINGS OVERVIEW 12

3 FINDINGS & TECH DETAILS 14

3.1 (HAL-01) UNDERFLOW MAY OCCUR DURING CLAIMS DUE TO LOSS OF PRE-

CISION: REWARDS WILL BE LOCKED PERMANENTLY FOR SOME USERS -

CRITICAL 15

Description 15

Proof of Concept 15

Recommendation 17

Remediation Plan 18

3.2 (HAL-02) ALL THE APE COINS STAKED IN THE BAKC POOL CAN BE DRAINED

BY ANY BAYC/MAYC HOLDER - CRITICAL 19

Description 19

Proof of Concept 22

Risk Level 23

Recommendation 23

Remediation Plan 24

1

3.3 (HAL-03) APE COINS STAKED AND ACCRUED REWARDS CAN BE STOLEN FROM

THE BAKC POOL AFTER THE BAKC COMMITTED IS TRANSFERRED TO A NEW

OWNER - CRITICAL 25

Description 25

Proof of Concept 26

Risk Level 27

Recommendation 27

Remediation Plan 27

3.4 (HAL-04) APE COINS STAKED AND ACCRUED REWARDS CAN BE STOLEN FROM

THE BAKC POOL IF THE BAKC ID 0 IS TRANSFERRED - CRITICAL 28

Description 28

Proof of Concept 29

Risk Level 30

Recommendation 30

Remediation Plan 30

3.5 (HAL-05) APE COINS STAKED AND ACCRUED REWARDS CAN BE STOLEN FROM

THE BAKC POOL IF THE BAKC ID 0 IS PAIRED WITH THE BAYC/MAYC WITH

ID 0 - CRITICAL 31

Description 31

Proof of Concept 33

Risk Level 33

Recommendation 33

Remediation Plan 34

3.6 (HAL-06) NFT HOLDERS CAN ALLOW ANYONE TO STAKE INTO THE NFT

POOLS THROUGH THE USE OF A SMART CONTRACT - HIGH 35

Description 35

Risk Level 36

2

Recommendation 36

Remediation Plan 36

3.7 (HAL-07) POOLS MAY GET LOCKED AFTER AN EMPTY CLAIM - MEDIUM 37

Description 37

Recommendation 38

Remediation Plan 38

3.8 (HAL-08) UNSAFE TYPE CASTINGS - LOW 39

Description 39

Recommendation 41

Remediation Plan 41

3.9 (HAL-09) CONTRACT DOES NOT ENFORCE THAT SETREWARDSPERTIMERANGE

IS CALLED IN A CORRECT ORDER - LOW 42

Description 42

Recommendation 43

Remediation Plan 43

3.10 (HAL-10) WITHDRAWAPECOIN FUNCTION DOES NOT AUTOMATICALLY CLAIM

THE ACCRUED REWARDS - INFORMATIONAL 44

Description 44

Recommendation 44

Remediation Plan 44

3.11 (HAL-11) MINIMUM DEPOSIT AMOUNT CAN BE BYPASSED - INFORMATIONAL

45

Description 45

Proof of Concept 45

Recommendation 46

Remediation Plan 46

3.12 (HAL-12) LACK OF AN EMERGENCYWITHDRAW FUNCTION - INFORMATIONAL

47

3

Description 47

Recommendation 47

Remediation Plan 47

3.13 (HAL-13) MISSING REQUIRE STATEMENT IN WITHDRAW FUNCTION - IN-

FORMATIONAL 48

Description 48

Recommendation 48

Remediation Plan 48

4 AUTOMATED TESTING 49

4.1 STATIC ANALYSIS REPORT 50

Description 50

Slither results 50

4.2 AUTOMATED SECURITY SCAN 54

Description 54

MythX results 54

4

DOCUMENT REVISION HISTORY

VERSION MODIFICATION DATE AUTHOR

0.1 Document Creation 08/15/2022 Roberto Reigada

0.2 Document Updates 09/23/2022 Roberto Reigada

0.3 Draft Review 09/23/2022 Gabi Urrutia

1.0 Remediation Plan 10/03/2022 Roberto Reigada

1.1 Remediation Plan Review 10/04/2022 Gabi Urrutia

1.2 Document Updates 11/28/2022 Roberto Reigada

1.3 Document Updates Review 11/29/2022 Piotr Cielas

1.4 Document Updates Review 11/29/2022 Gabi Urrutia

5

CONTACTS

CONTACT COMPANY EMAIL

Rob Behnke Halborn Rob.Behnke@halborn.com

Steven Walbroehl Halborn Steven.Walbroehl@halborn.com

Gabi Urrutia Halborn Gabi.Urrutia@halborn.com

Piotr Cielas Halborn Piotr.Cielas@halborn.com

Roberto Reigada Halborn Roberto.Reigada@halborn.com

6

mailto:Rob.Behnke@halborn.com
mailto:Steven.Walbroehl@halborn.com
mailto:Gabi.Urrutia@halborn.com
mailto:Piotr.Cielas@halborn.com
mailto:Roberto.Reigada@halborn.com

7

EXECUTIVE OVERVIEW

1.1 INTRODUCTION

Horizen Labs engaged Halborn to conduct a security audit on their smart

contracts beginning on August 15th, 2022 and ending on October 4th, 2022.

The security assessment was scoped to the smart contracts provided in the

GitHub repository HorizenLabs/grapes-staking/.

1.2 AUDIT SUMMARY

The team at Halborn was provided 6 weeks for the engagement and assigned a

full-time security engineer to audit the security of the smart contracts.

The security engineer is a blockchain and smart-contract security expert

with advanced penetration testing, smart-contract hacking, and deep

knowledge of multiple blockchain protocols.

The purpose of this audit is to:

• Ensure that smart contract functions operate as intended

• Identify potential security issues with the smart contracts

In summary, Halborn identified some security risks that were mostly

addressed by the Horizen Labs team.

1.3 TEST APPROACH & METHODOLOGY

Halborn performed a combination of manual and automated security testing

to balance efficiency, timeliness, practicality, and accuracy in regard

to the scope of this audit. While manual testing is recommended to

uncover flaws in logic, process, and implementation; automated testing

techniques help enhance coverage of the code and can quickly identify

items that do not follow the security best practices. The following

phases and associated tools were used during the audit:

8

EX
EC

UT
IV

E
OV

ER
VI

EW

https://github.com/HorizenLabs/grapes-staking/

• Research into architecture and purpose

• Smart contract manual code review and walkthrough

• Graphing out functionality and contract logic/connectivity/functions

(solgraph)

• Manual assessment of use and safety for the critical Solidity

variables and functions in scope to identify any arithmetic related

vulnerability classes

• Manual testing by custom scripts

• Scanning of solidity files for vulnerabilities, security hot-spots

or bugs. (MythX)

• Static Analysis of security for scoped contract, and imported

functions. (Slither)

• Testnet deployment (Brownie, Remix IDE)

RISK METHODOLOGY:

Vulnerabilities or issues observed by Halborn are ranked based on the

risk assessment methodology by measuring the LIKELIHOOD of a security

incident and the IMPACT should an incident occur. This framework

works for communicating the characteristics and impacts of technology

vulnerabilities. The quantitative model ensures repeatable and accurate

measurement while enabling users to see the underlying vulnerability

characteristics that were used to generate the Risk scores. For every

vulnerability, a risk level will be calculated on a scale of 5 to 1 with

5 being the highest likelihood or impact.

RISK SCALE - LIKELIHOOD

5 - Almost certain an incident will occur.

4 - High probability of an incident occurring.

3 - Potential of a security incident in the long term.

2 - Low probability of an incident occurring.

1 - Very unlikely issue will cause an incident.

RISK SCALE - IMPACT

5 - May cause devastating and unrecoverable impact or loss.

4 - May cause a significant level of impact or loss.

9

EX
EC

UT
IV

E
OV

ER
VI

EW

3 - May cause a partial impact or loss to many.

2 - May cause temporary impact or loss.

1 - May cause minimal or un-noticeable impact.

The risk level is then calculated using a sum of these two values, creating

a value of 10 to 1 with 10 being the highest level of security risk.

CRITICAL HIGH MEDIUM LOW INFORMATIONAL

10 - CRITICAL

9 - 8 - HIGH

7 - 6 - MEDIUM

5 - 4 - LOW

3 - 1 - VERY LOW AND INFORMATIONAL

10

EX
EC

UT
IV

E
OV

ER
VI

EW

1.4 SCOPE

IN-SCOPE:

The security assessment was scoped to the following smart contract:

• ApeCoinStaking.sol

• ApeCoinStakedVoting.sol

Initial Commit ID:

- 5d995f273ebd684c22ded70a66728d51936d5379

Fixed Commit ID:

- 80631eec49802396c8e4384dba46e4662a36516b

11

EX
EC

UT
IV

E
OV

ER
VI

EW

https://github.com/HorizenLabs/grapes-staking/tree/5d995f273ebd684c22ded70a66728d51936d5379
https://github.com/HorizenLabs/grapes-staking/tree/80631eec49802396c8e4384dba46e4662a36516b

2. ASSESSMENT SUMMARY & FINDINGS
OVERVIEW

CRITICAL HIGH MEDIUM LOW INFORMATIONAL

5 1 1 2 4

IM
PA
CT

LIKELIHOOD

(HAL-07)

(HAL-01)
(HAL-02)
(HAL-03)
(HAL-04)
(HAL-05)

(HAL-08)
(HAL-09)

(HAL-06)

(HAL-10)
(HAL-11)
(HAL-12)
(HAL-13)

12

EX
EC

UT
IV

E
OV

ER
VI

EW

SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

HAL01 - UNDERFLOW MAY OCCUR DURING
CLAIMS DUE TO LOSS OF PRECISION:
REWARDS WILL BE LOCKED PERMANENTLY

FOR SOME USERS

Critical SOLVED - 09/28/2022

HAL02 - ALL THE APE COINS STAKED IN
THE BAKC POOL CAN BE DRAINED BY ANY

BAYC/MAYC HOLDER
Critical SOLVED - 09/28/2022

HAL03 - APE COINS STAKED AND ACCRUED
REWARDS CAN BE STOLEN FROM THE BAKC
POOL AFTER THE BAKC COMMITTED IS

TRANSFERRED TO A NEW OWNER

Critical SOLVED - 09/28/2022

HAL04 - APE COINS STAKED AND ACCRUED
REWARDS CAN BE STOLEN FROM THE BAKC
POOL IF THE BAKC ID 0 IS TRANSFERRED

Critical SOLVED - 09/28/2022

HAL05 - APE COINS STAKED AND
ACCRUED REWARDS CAN BE STOLEN FROM
THE BAKC POOL IF THE BAKC ID 0 IS
PAIRED WITH THE BAYC/MAYC WITH ID 0

Critical SOLVED - 09/28/2022

HAL06 - NFT HOLDERS CAN ALLOW
ANYONE TO STAKE INTO THE NFT POOLS
THROUGH THE USE OF A SMART CONTRACT

High RISK ACCEPTED

HAL07 - POOLS MAY GET LOCKED AFTER
AN EMPTY CLAIM

Medium SOLVED - 09/28/2022

HAL08 - UNSAFE TYPE CASTINGS Low SOLVED - 09/28/2022

HAL09 - CONTRACT DOES NOT ENFORCE
THAT SETREWARDSPERTIMERANGE IS

CALLED IN A CORRECT ORDER
Low SOLVED - 09/28/2022

HAL10 - WITHDRAWAPECOIN FUNCTION
DOES NOT AUTOMATICALLY CLAIM THE

ACCRUED REWARDS
Informational SOLVED - 09/28/2022

HAL11 - MINIMUM DEPOSIT AMOUNT CAN
BE BYPASSED

Informational ACKNOWLEDGED

HAL12 - LACK OF AN
EMERGENCYWITHDRAW FUNCTION

Informational ACKNOWLEDGED

HAL13 - MISSING REQUIRE STATEMENT
IN WITHDRAW FUNCTION

Informational SOLVED - 09/30/2022

13

EX
EC

UT
IV

E
OV

ER
VI

EW

14

FINDINGS & TECH
DETAILS

3.1 (HAL-01) UNDERFLOW MAY OCCUR
DURING CLAIMS DUE TO LOSS OF
PRECISION: REWARDS WILL BE LOCKED
PERMANENTLY FOR SOME USERS -
CRITICAL

Description:

Currently, there is a known issue related to SushiSwap MasterChefV2 forks

where user’s transactions may revert when withdrawing & claiming.

The rewardDebt calculation logic may cause an integer underflow.

rewardDebt gets updated in the _deposit(), _claim() and _withdraw()

functions. It gets updated based on the change in the amount of Ape

Coins staked in the pool.

Although, the update logic is not “path-independent”. Each rewardDebt

subtraction in _withdraw() always gets rounded down.

Multiple withdrawals can end up causing the actual rewardDebt to be

“higher” than it should be. This could cause the pendingRewards() call

to overflow and users to not be able to claim their rewards from the

staking pools as the contract would not have enough balance of Ape Coins.

Using the SafeCast library, as it is recommended in the HAL06 finding,

would prevent the overflow but the claim() would still revert.

Proof of Concept:

In order to achieve the result in the screenshot, some fuzzing was

performed. Basically, the rewards for the Ape Coin pool were configured

this way:

contract_ApeCoinStaking.setRewardsPerTimeRange(0, 1000_000000000000000000

, 1672531200, 1672567200, 0, {'from': owner})

15

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://twitter.com/n1punp/status/1536312043372187651?s=20&t=hOfzg4MjmpEELu-2llN7mA

contract_ApeCoinStaking.setRewardsPerTimeRange(0, 100_000000000000000000

, 1672567200, 1672603200, 0, {'from': owner})

contract_ApeCoinStaking.setRewardsPerTimeRange(0, 10_000000000000000000

, 1672603200, 1672639200, 0, {'from': owner})

contract_ApeCoinStaking.setRewardsPerTimeRange(0, 1_000000000000000000,

1672639200, 1672675200, 0, {'from': owner})

User1 staked 100_123456789012345678 Ape Coins into the Ape pool before

the first quarter started.

User2 staked 100_123456789012345678 Ape Coins into the Ape pool before

the first quarter started.

Created the following loop with 40 iterations (10 hours per quarter, 4

quarters):

Listing 1: Fuzzing script

1 for i in range (40):

2 print ()

3 output.greenn("Calling -> chain.sleep (3601)")

4 chain.sleep (3601)

5 output.greenn("Calling -> chain.sleep (1)")

6 chain.mine (1)

7 print("\n")

8 value1 = randint(1, 10)

9 valueToWithdraw = randint (1 _000000000000000000 , 2

ë _000000000000000000)

10 if (value1 > 5):

11 output.yelloww("Calling -> contract_ApeCoinStaking.

ë withdrawApeCoin(" + str(valueToWithdraw) + ", user1 , {'from ':

ë user1 })")

12 contract_ApeCoinStaking.withdrawApeCoin(valueToWithdraw ,

ë user1 , {'from': user1 })

13 output.yelloww("Calling -> contract_ApeCoinStaking.

ë claimApeCoin(user1.address , {'from ': user1 })")

14 contract_ApeCoinStaking.claimApeCoin(user1.address , {'from

ë ': user1 })

15 value2 = randint(1, 10)

16 if (value2 > 5):

17 output.yelloww("Calling -> contract_ApeCoinStaking.

ë withdrawApeCoin(" + str(valueToWithdraw) + ", user2 , {'from ':

16

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

ë user2 })")

18 contract_ApeCoinStaking.withdrawApeCoin(valueToWithdraw ,

ë user2 , {'from': user2 })

19 output.yelloww("Calling -> contract_ApeCoinStaking.

ë claimApeCoin(user2.address , {'from ': user2 })")

20 contract_ApeCoinStaking.claimApeCoin(user2.address , {'from

ë ': user2 })

21 output.redd("contract_ApeCoinStaking.pendingRewards (0, user1 ,

ë 0) -> " + str(contract_ApeCoinStaking.pendingRewards (0, user1 , 0))

ë)

22 output.redd("contract_ApeCoinStaking.pendingRewards (0, user2 ,

ë 0) -> " + str(contract_ApeCoinStaking.pendingRewards (0, user2 , 0))

ë)

Recommendation:

It is recommended to use the NomiChef’s original MasterChef’s rewardDebt

logic.

17

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://etherscan.io/address/0xc2edad668740f1aa35e4d8f227fb8e17dca888cd#code
https://etherscan.io/address/0xc2edad668740f1aa35e4d8f227fb8e17dca888cd#code

Remediation Plan:

SOLVED: The Horizen Labs team solved the issue. Precision is not lost

now each time a withdraw() is performed, since the division was removed

from the rewardsDebt calculation.

18

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.2 (HAL-02) ALL THE APE COINS
STAKED IN THE BAKC POOL CAN BE
DRAINED BY ANY BAYC/MAYC HOLDER -
CRITICAL

Description:

The ApeCoinStaking contract implements 4 different pools:

- ApeCoin pool

- BAYC pool

- MAYC pool

- Pair pool (BAKC)

In order to stake in the Pair pool, users should first commit a BAYC/BAKC

or a MAYC/BAKC pair.

A paired BAKC NFT may change ownership before uncommitting from the

ApeCoinStaking contract. In this edge case of a split pair, the following

rules were implemented:

• Both owners (the current owner of one NFT and the new owner of the

other NFT) can uncommit.

• Upon uncommitting the amount of Ape Coins staked is given to the

BAYC/MAYC owner and the accrued rewards are given to the BAKC owner.

• The user that performs the uncommitting will obviously pay the gas

costs.

A pair is committed through the depositBAKC() function:

Listing 2: ApeCoinStaking.sol (Lines 205,206)

197 /**

198 * @dev Commits/Deposits $APE to pairs in the BAKC pool.

199 * Expects an input array of pair Token IDs/amount of $APE to

ë deposit for each pair.

200 * - `_baycPairs `: Array for BAYC/BAKC pairs

19

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

201 * - `_maycPairs `: Array for MAYC/BAKC pairs

202 */

203 function depositBAKC(PairNftWithAmount [] calldata _baycPairs ,

ë PairNftWithAmount [] calldata _maycPairs) external {

204 updatePool(BAKC_POOL_ID);

205 _depositPairNft(BAYC_POOL_ID , _baycPairs);

206 _depositPairNft(MAYC_POOL_ID , _maycPairs);

207 }

Listing 3: ApeCoinStaking.sol (Lines 640,641)

628 function _depositPairNft(uint256 mainTypePoolId , PairNftWithAmount

ë [] calldata _nfts) private {

629 for(uint i; i < _nfts.length; ++i) {

630 uint256 mainTokenId = _nfts[i]. mainTokenId;

631 uint256 bakcTokenId = _nfts[i]. bakcTokenId;

632 uint256 amount = _nfts[i]. amount;

633 Position storage position = nftPosition[BAKC_POOL_ID][

ë bakcTokenId];

634

635 if(position.stakedAmount == 0) {

636 require(nftContracts[mainTypePoolId]. ownerOf(

ë mainTokenId) == msg.sender && !mainToBakc[mainTypePoolId][

ë mainTokenId]. isPaired

637 , "Main Token not owned by caller or already paired");

638 require(nftContracts[BAKC_POOL_ID]. ownerOf(bakcTokenId

ë) == msg.sender && !bakcToMain[bakcTokenId][mainTypePoolId].

ë isPaired

639 ,"BAKC Token not owned by caller or already paired");

640 mainToBakc[mainTypePoolId][mainTokenId] =

ë PairingStatus(bakcTokenId , true);

641 bakcToMain[bakcTokenId][mainTypePoolId] =

ë PairingStatus(mainTokenId , true);

642 } else {

643 require(mainTokenId == bakcToMain[bakcTokenId][

ë mainTypePoolId].tokenId , "BAKC Token already paired");

644 }

645

646 _depositNftGuard(BAKC_POOL_ID , position , amount);

647 emit DepositPairNft(msg.sender , amount , mainTypePoolId ,

ë mainTokenId , bakcTokenId);

648 }

649 }

650

20

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

651 function _depositNftGuard(uint256 _poolId , Position storage

ë _position , uint256 _amount) private {

652 require(_amount >= MIN_DEPOSIT , "Can't deposit less than 1

ë $APE");

653 require(_amount + _position.stakedAmount

654 <= pools[_poolId]. rewardsPerHourInRanges[pools[_poolId].

ë lastRewardsRangeIndex]. capPerPosition , "Can't stake more than cap

ë amount");

655

656 _deposit(_poolId , _position , _amount);

657 }

As we can see, the contract stores in the mainToBakc and bakcToMain

mappings the respective pair of each of the NFTs.

Although, these mappings are not properly validated during the withdrawal:

Listing 4: ApeCoinStaking.sol (Lines 344,345)

339 /**

340 * @dev Uncommits/Withdraws given amount of staked $APE from NFTs

ë in BAKC Pool.

341 */

342 function withdrawBAKC(PairNftWithAmount [] calldata _baycPairs ,

ë PairNftWithAmount [] calldata _maycPairs) external {

343 updatePool(BAKC_POOL_ID);

344 _withdrawPairNft(BAYC_POOL_ID , _baycPairs);

345 _withdrawPairNft(MAYC_POOL_ID , _maycPairs);

346 }

Listing 5: ApeCoinStaking.sol

726 function _withdrawPairNft(uint256 mainTypePoolId ,

ë PairNftWithAmount [] calldata _nfts) private {

727 for(uint i; i < _nfts.length; ++i) {

728 uint256 mainTokenId = _nfts[i]. mainTokenId;

729 uint256 bakcTokenId = _nfts[i]. bakcTokenId;

730 uint256 amount = _nfts[i]. amount;

731 address mainTokenOwner = nftContracts[mainTypePoolId].

ë ownerOf(mainTokenId);

732 address bakcOwner = nftContracts[BAKC_POOL_ID]. ownerOf(

ë bakcTokenId);

21

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

733

734 require(mainTokenOwner == msg.sender || bakcOwner == msg.

ë sender , "At least one token in pair must be owned by caller");

735

736 Position storage position = nftPosition[BAKC_POOL_ID][

ë bakcTokenId];

737 require(mainTokenOwner == bakcOwner || amount == position.

ë stakedAmount , "Split pair can't partially withdraw");

738

739 if (amount == position.stakedAmount) {

740 uint256 rewardsToBeClaimed = _claim(BAKC_POOL_ID ,

ë position , bakcOwner);

741 mainToBakc[mainTypePoolId][mainTokenId]. isPaired =

ë false;

742 bakcToMain[bakcTokenId][mainTypePoolId]. isPaired =

ë false;

743 emit ClaimRewardsPairNft(msg.sender ,

ë rewardsToBeClaimed , mainTypePoolId , mainTokenId , bakcTokenId);

744 }

745 _withdraw(BAKC_POOL_ID , position , amount , mainTokenOwner);

746 emit WithdrawPairNft(msg.sender , amount , mainTypePoolId ,

ë mainTokenId , bakcTokenId);

747 }

748 }

Proof of Concept:

User1 with the mock address 0x0000000000000000000000000000000000000101

owns the BAYC NFT #7337 AND BAKC NFT #851.

User2 with the mock address 0x0000000000000000000000000000000000000102

owns the BAYC NFT #8523.

1. User1 commits BAYC #7337 and BAKC #851 and stakes 100 Ape Coins in

the BAKC pool through the depositBAKC() function.

2. User2 calls withdrawBAKC([(8523, 851, 100_000000000000000000)], [])

. He only owns the BAYC #8523 but as the smart contract just checks

the ownership of one of the NFTs of the pair and also does not

check if that BAKC is actually paired to the BAYC passed, user2 can

unstake the Ape Coins previously staked by user1.

3. This could be repeated with any BAKC pair staked in the pool.

22

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Risk Level:

Likelihood - 5

Impact - 5

Recommendation:

It is recommended to validate that the NFTs passed to the withdrawBAKC()

function call are paired.

23

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Remediation Plan:

SOLVED: The Horizen Labs team solved the issue. The ApeCoinStaking smart

contract now verifies that the NFT IDs passed to withdrawBAKC() are

correctly paired.

24

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.3 (HAL-03) APE COINS STAKED AND
ACCRUED REWARDS CAN BE STOLEN FROM
THE BAKC POOL AFTER THE BAKC
COMMITTED IS TRANSFERRED TO A NEW
OWNER - CRITICAL

Description:

Related to the BAKC pool and according to the documentation provided, when

a BAYC/BAKC or MAYC/BAKC pair is split (e.g. the BAKC is sold to another

user) the only functions available are uncommitting and depositing. Other

functions (such as withdrawing and claiming) will be disabled in the smart

contract. If a user stores one pair in a different wallet, that user

will not be able to claim rewards and must uncommit first.

To implement this, the ApeCoinStaking contract has the following require

statements in the claimPairNft() function:

Listing 6: ApeCoinStaking.sol (Lines 691,692)

684 function _claimPairNft(uint256 mainTypePoolId , PairNft [] calldata

ë _pairs , address _recipient) private {

685 for(uint i; i < _pairs.length; ++i) {

686 uint256 mainTokenId = _pairs[i]. mainTokenId;

687 uint256 bakcTokenID = _pairs[i]. bakcTokenId;

688

689 Position storage position = nftPosition[BAKC_POOL_ID][

ë bakcTokenID];

690

691 require(nftContracts[mainTypePoolId]. ownerOf(mainTokenId)

ë == msg.sender , "Main Token not owned by caller");

692 require(nftContracts[BAKC_POOL_ID]. ownerOf(bakcTokenID) ==

ë msg.sender , "BAKC Token not owned by caller");

693

694 uint256 rewardsToBeClaimed = _claim(BAKC_POOL_ID , position

ë , _recipient);

695 emit ClaimRewardsPairNft(msg.sender , rewardsToBeClaimed ,

ë mainTypePoolId , mainTokenId , bakcTokenID);

25

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

696 }

697 }

As happened already in the HAL-01 issue, the mainToBakc and bakcToMain

mappings are not validated during the claimBAKC() call.

Proof of Concept:

User1 with the mock address 0x0000000000000000000000000000000000000101

owns the BAYC NFT #7337 AND BAKC NFT #851.

User2 with the mock address 0x0000000000000000000000000000000000000102

owns the BAYC NFT #8523.

1. User1 commits BAYC #7337 and BAKC #851 and stakes 100 Ape Coins in

the BAKC pool through the depositBAKC() function:

contract_ApeCoinStaking.depositBAKC([(7337, 851, 100_000000000000000000

)], [], {'from': user1})

2. Some time passes, user1 has accrued a lot of Ape Coin rewards.

3. User1 sells his BAKC #851 to user2.

4. User2 which already owned BAYC #8523, claims the Ape Coin rewards

of the BAKC #851 by calling the claimBAKC() but using his own BAYC

#8523 as its pair.

contract_ApeCoinStaking.claimBAKC([(8523, 851)], [], user2.address

, {'from': user2})

5. User2 has stolen the Ape Coin staked by user1 plus the rewards

(rewards are intended as user2 now owns the BAKC NFT).

26

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Risk Level:

Likelihood - 5

Impact - 5

Recommendation:

It is recommended to validate that the NFTs passed to the claimBAKC()

function call are paired.

Remediation Plan:

SOLVED: The Horizen Labs team solved the issue. The ApeCoinStaking smart

contract now verifies that the NFT IDs passed to claimBAKC() are correctly

paired.

27

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.4 (HAL-04) APE COINS STAKED AND
ACCRUED REWARDS CAN BE STOLEN FROM
THE BAKC POOL IF THE BAKC ID 0 IS
TRANSFERRED - CRITICAL

Description:

As a fix to the HAL-02 issue, the following update was done in the

_claimPairNft() function:

Listing 7: ApeCoinStaking.sol (Line 708)

699 function _claimPairNft(uint256 mainTypePoolId , PairNft [] calldata

ë _pairs , address _recipient) private {

700 for(uint i; i < _pairs.length; ++i) {

701 uint256 mainTokenId = _pairs[i]. mainTokenId;

702 uint256 bakcTokenId = _pairs[i]. bakcTokenId;

703

704 Position storage position = nftPosition[BAKC_POOL_ID][

ë bakcTokenId];

705

706 require(nftContracts[mainTypePoolId]. ownerOf(mainTokenId)

ë == msg.sender , "Main Token not owned by caller");

707 require(nftContracts[BAKC_POOL_ID]. ownerOf(bakcTokenId) ==

ë msg.sender , "BAKC Token not owned by caller");

708 require(mainToBakc[mainTypePoolId][mainTokenId]. tokenId ==

ë bakcTokenId , "The given main NFT is not paired with given BAKC

ë NFT");

709

710 uint256 rewardsToBeClaimed = _claim(BAKC_POOL_ID , position

ë , _recipient);

711 emit ClaimRewardsPairNft(msg.sender , rewardsToBeClaimed ,

ë mainTypePoolId , mainTokenId , bakcTokenId);

712 }

713 }

This is also exploitable but only with the BAKC #0 (BAKC collection,

unluckily, starts on this ID). The exploit is possible because

the mainToBakc[mainTypePoolId][mainTokenId].tokenId mapping will be

28

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

initialized with 0 by the Solidity compiler.

On the other hand, note that initially it can only be exploited with BAKC

#0. But later on, after some NFT uncommitments, it may happen with any

NFT ID, as the smart contract does not “reset/delete” the mainToBakc

[mainTypePoolId][mainTokenId] mapping after an NFT uncommitment, the

contract just sets mainToBakc[mainTypePoolId][mainTokenId].isPaired to

false.

Proof of Concept:

User1 with the mock address 0x0000000000000000000000000000000000000101

owns the BAYC NFT #7337 AND BAKC NFT #0.

User2 with the mock address 0x0000000000000000000000000000000000000102

owns the BAYC NFT #8523.

1. User1 commits BAYC #7337 and BAKC #0 and stakes 100 Ape Coins in

the BAKC pool through the depositBAKC() function:

contract_ApeCoinStaking.depositBAKC([(7337, 0, 100_000000000000000000

)], [], {'from': user1})

2. Some time passes, user1 has accrued a lot of Ape Coin rewards.

3. User1 sells his BAKC #0 to user2.

4. User2 which already owned BAYC #8523, claims the Ape Coin rewards

of the BAKC #0 by calling the claimBAKC() but using his own BAYC

#8523 as its pair.

contract_ApeCoinStaking.claimBAKC([(8523, 0)], [], user2.address,

{'from': user2})

5. User2 has stolen the Ape Coin staked by user1 plus the rewards

(rewards are intended as user2 now owns the BAKC NFT).

29

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Risk Level:

Likelihood - 5

Impact - 5

Recommendation:

It is recommended to validate that the NFTs passed to the claimBAKC()

function call are paired. On the other hand, special care should be taken

with the BAKC #0 as the mainToBakc[mainTypePoolId][mainTokenId] mapping

will be initialized with that value.

Remediation Plan:

SOLVED: The Horizen Labs team solved the issue. The ApeCoinStaking smart

contract checks now that the NFT IDs passed to the claimBAKC() are

correctly paired.

30

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.5 (HAL-05) APE COINS STAKED AND
ACCRUED REWARDS CAN BE STOLEN FROM
THE BAKC POOL IF THE BAKC ID 0 IS
PAIRED WITH THE BAYC/MAYC WITH ID
0 - CRITICAL

Description:

In the case that a user pairs the BAYC/MAYC #0 with the BAKC #0 these

mappings will take the following values:

mainToBakc[1][0].tokenId == 0

bakcToMain[0][1].tokenId == 0

In order to perform a withdrawal or a claim the following require

statements should be passed:

Listing 8: ApeCoinStaking.sol (Lines 800,801,802,805)

792 function _withdrawPairNft(uint256 mainTypePoolId ,

ë PairNftWithAmount [] calldata _nfts) private {

793 for(uint i; i < _nfts.length; ++i) {

794 uint256 mainTokenId = _nfts[i]. mainTokenId;

795 uint256 bakcTokenId = _nfts[i]. bakcTokenId;

796 uint256 amount = _nfts[i]. amount;

797 address mainTokenOwner = nftContracts[mainTypePoolId].

ë ownerOf(mainTokenId);

798 address bakcOwner = nftContracts[BAKC_POOL_ID]. ownerOf

ë (bakcTokenId);

799

800 require(mainTokenOwner == msg.sender || bakcOwner ==

ë msg.sender , "At least one token in pair must be owned by caller");

801 require(mainToBakc[mainTypePoolId][mainTokenId].

ë tokenId == bakcTokenId

802 && bakcToMain[bakcTokenId][mainTypePoolId]. tokenId

ë == mainTokenId , "The provided Token IDs are not paired");

803

804 Position storage position = nftPosition[BAKC_POOL_ID][

ë bakcTokenId];

31

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

805 require(mainTokenOwner == bakcOwner || amount ==

ë position.stakedAmount , "Split pair can't partially withdraw");

806

807 if (amount == position.stakedAmount) {

808 uint256 rewardsToBeClaimed = _claim(BAKC_POOL_ID ,

ë position , bakcOwner);

809 mainToBakc[mainTypePoolId][mainTokenId] =

ë PairingStatus (0, false);

810 bakcToMain[bakcTokenId][mainTypePoolId] =

ë PairingStatus (0, false);

811 emit ClaimRewardsPairNft(msg.sender ,

ë rewardsToBeClaimed , mainTypePoolId , mainTokenId , bakcTokenId);

812 }

813 _withdraw(BAKC_POOL_ID , position , amount ,

ë mainTokenOwner);

814 emit WithdrawPairNft(msg.sender , amount ,

ë mainTypePoolId , mainTokenId , bakcTokenId);

815 }

816 }

Listing 9: ApeCoinStaking.sol (Lines 755-758)

748 function _claimPairNft(uint256 mainTypePoolId , PairNft []

ë calldata _pairs , address _recipient) private {

749 for(uint i; i < _pairs.length; ++i) {

750 uint256 mainTokenId = _pairs[i]. mainTokenId;

751 uint256 bakcTokenId = _pairs[i]. bakcTokenId;

752

753 Position storage position = nftPosition[BAKC_POOL_ID][

ë bakcTokenId];

754

755 require(nftContracts[mainTypePoolId]. ownerOf(

ë mainTokenId) == msg.sender , "Main Token not owned by caller");

756 require(nftContracts[BAKC_POOL_ID]. ownerOf(bakcTokenId

ë) == msg.sender , "BAKC Token not owned by caller");

757 require(mainToBakc[mainTypePoolId][mainTokenId].

ë tokenId == bakcTokenId

758 && bakcToMain[bakcTokenId][mainTypePoolId]. tokenId

ë == mainTokenId , "The provided Token IDs are not paired");

759

760 uint256 rewardsToBeClaimed = _claim(BAKC_POOL_ID ,

ë position , _recipient);

761 emit ClaimRewardsPairNft(msg.sender ,

ë rewardsToBeClaimed , mainTypePoolId , mainTokenId , bakcTokenId);

32

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

762 }

763 }

Considering that all the mappings are initially set to 0 by the compiler:

mainToBakc[2][0].tokenId == 0

bakcToMain[0][2].tokenId == 0

This means that if the BAYC #0 is paired with the BAKC #0 the user with

the MAYC #0 would be able to steal the staked Ape Coins and the accrued

rewards.

Proof of Concept:

Risk Level:

Likelihood - 5

Impact - 5

Recommendation:

It is recommended to add an extra check that checks the PairingStatus of

the mainToBakc and bakcToMain mappings.

33

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Remediation Plan:

SOLVED: The Horizen Labs team solved the issue by adding the suggested

check.

34

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.6 (HAL-06) NFT HOLDERS CAN ALLOW
ANYONE TO STAKE INTO THE NFT POOLS
THROUGH THE USE OF A SMART
CONTRACT - HIGH

Description:

There are 3 different pools where only holders of an NFT can stake. These

are the Bored Ape Yatch Club pool, the Mutant Ape Yatch Club pool and the

Bored Ape Kennel Club pool.

These are the Ape Coin allocations for those pools:

These staking pools are designed to benefit the NFT holders as they get

access to a restricted staking pool.

In the ApeCoinStaking contract, the deposit and withdraw functions can be

called by another smart contract. This means that someone could create a

“ApeCoin delegator” smart contract where users can lend their BAYC, MAYC

and BAKC NFTs. These NFTs then could be used by the ApeCoin delegator

contract to stake in the ApeCoinStaking restricted pools. Users would

delegate their Ape Coins into the ApeCoin delegator contract, and this

contract would place the Ape Coins in the different restricted pools.

The ApeCoin delegator smart contract would keep a fee as the protocol fee,

35

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

the lenders could get another fee for lending their NFTs and the ApeCoin

delegator users would get Ape Coins as rewards from the restricted pools.

This scenario would not really benefit NFT holders, as this would

provide access to those restricted pools to a higher number of users.

The higher number of users, the lower the shares, hence, lower rewards

for the legit NFT holders.

Risk Level:

Likelihood - 5

Impact - 3

Recommendation:

It is recommended to restrict smart contracts from interacting with the

ApeCoinStaking contract.

Remediation Plan:

RISK ACCEPTED: The Horizen Labs team accepts this risk, as this approach

would also block multi-signature wallets.

36

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.7 (HAL-07) POOLS MAY GET LOCKED
AFTER AN EMPTY CLAIM - MEDIUM

Description:

An edge case has been found in the ApeCoinStaking contract where if no

ApeCoins are staked during a whole quarter or if pool.stakedAmount == 0

at the end of a quarter, and a user performs an empty claim() call in the

first hour of the next quarter, the pool will get locked.

Users will still be able to deposit in the pool, but they will never be

able to withdraw their stake or claim their accrued rewards from that

pool.

37

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Recommendation:

It is recommended to disallow claiming a zero amount, for example:

Listing 10: ApeCoinStaking.sol (Line 229)

224 function claimApeCoin(address _recipient) public {

225 updatePool(APECOIN_POOL_ID);

226

227 Position storage position = addressPosition[msg.sender];

228 uint rewardsToBeClaimed = _claim(APECOIN_POOL_ID , position ,

ë _recipient);

229 require(rewardsToBeClaimed > 0, "Nothing to claim");

230

231 emit ClaimRewards(msg.sender , rewardsToBeClaimed , _recipient);

232 }

Remediation Plan:

SOLVED: The Horizen Labs team solved the issue in the Commit ID #6

38

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/HorizenLabs/grapes-staking/tree/d5a3a068a44c3cbbbe00069215dfc703a2ab366e

3.8 (HAL-08) UNSAFE TYPE CASTINGS -
LOW

Description:

Solidity 0.8 is introducing type checking for arithmetic operations,

but not for type castings. Although very unlikely, the following type

castings can overflow in the ApeCoinStaking contract:

Listing 11: ApeCoinStaking.sol (Line 593)

583 function pendingRewards(uint256 _poolId , address _address , uint256

ë _tokenId) external view returns (uint256) {

584 Pool memory pool = pools[_poolId];

585 Position memory position = _poolId == 0 ? addressPosition[

ë _address]: nftPosition[_poolId][_tokenId];

586

587 (uint256 rewardsSinceLastCalculated ,) = rewardsBy(_poolId ,

ë pool.lastRewardedTimestampHour , getPreviousTimestampHour(block.

ë timestamp));

588 uint256 accumulatedRewardsPerShare = pool.

ë accumulatedRewardsPerShare;

589

590 if (block.timestamp > pool.lastRewardedTimestampHour +

ë SECONDS_PER_HOUR && pool.stakedAmount != 0) {

591 accumulatedRewardsPerShare = accumulatedRewardsPerShare +

ë rewardsSinceLastCalculated * APE_COIN_PRECISION / pool.

ë stakedAmount;

592 }

593 return uint256(int256 ((position.stakedAmount *

ë accumulatedRewardsPerShare / APE_COIN_PRECISION)) - position.

ë rewardsDebt);

594 }

Listing 12: ApeCoinStaking.sol (Line 628)

621 function _deposit(uint256 _poolId , Position storage _position ,

ë uint256 _amount) private {

622 Pool storage pool = pools[_poolId];

623

624 _position.stakedAmount += _amount;

39

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

625 pool.stakedAmount += _amount;

626 _position.rewardsDebt += int256(_amount * pool.

ë accumulatedRewardsPerShare / APE_COIN_PRECISION);

627

628 apeCoin.safeTransferFrom(msg.sender , address(this), _amount);

629 }

Listing 13: ApeCoinStaking.sol (Lines 677,678)

674 function _claim(uint256 _poolId , Position storage _position ,

ë address _recipient) private returns (uint256) {

675 Pool storage pool = pools[_poolId];

676

677 int256 accumulatedApeCoins = int256(_position.stakedAmount *

ë pool.accumulatedRewardsPerShare / APE_COIN_PRECISION);

678 uint256 rewardsToBeClaimed = uint256(accumulatedApeCoins -

ë _position.rewardsDebt);

679

680 _position.rewardsDebt = accumulatedApeCoins;

681

682 if (rewardsToBeClaimed != 0) {

683 apeCoin.safeTransfer(_recipient , rewardsToBeClaimed);

684 }

685 return rewardsToBeClaimed;

686 }

Listing 14: ApeCoinStaking.sol (Line 720)

715 function _withdraw(uint256 _poolId , Position storage _position ,

ë uint256 _amount , address _recipient) private {

716 Pool storage pool = pools[_poolId];

717

718 _position.stakedAmount -= _amount;

719 pool.stakedAmount -= _amount;

720 _position.rewardsDebt -= int256(_amount * pool.

ë accumulatedRewardsPerShare / APE_COIN_PRECISION);

721

722 apeCoin.safeTransfer(_recipient , _amount);

723 }

40

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Recommendation:

It is recommended to use the SafeCast library in the lines mentioned:

Listing 15: SafeCast.sol

1 function toUint256(int256 value) internal pure returns (uint256) {

2 require(value >= 0, "SafeCast: value must be positive");

3 return uint256(value);

4 }

Listing 16: SafeCast.sol

1 function toInt256(uint256 value) internal pure returns (int256) {

2 // Note: Unsafe cast below is okay because `type(int256).max `

ë is guaranteed to be positive

3 require(value <= uint256(type(int256).max), "SafeCast: value

ë doesn 't fit in an int256");

4 return int256(value);

5 }

Remediation Plan:

SOLVED: The Horizen Labs team solved the issue and now uses the SafeCast

library to perform all the type castings.

41

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.9 (HAL-09) CONTRACT DOES NOT
ENFORCE THAT SETREWARDSPERTIMERANGE
IS CALLED IN A CORRECT ORDER - LOW

Description:

The function setRewardsPerTimeRange() sets time ranges with given rewards

per hour for a given pool:

Listing 17: ApeCoinStaking.sol

361 function setRewardsPerTimeRange(

362 uint256 _poolId ,

363 uint256 _amount ,

364 uint256 _startTimestamp ,

365 uint256 _endTimeStamp ,

366 uint256 _capPerPosition) external onlyOwner

367 {

368 require (_poolId < 4, "Invalid poolId");

369 require (_startTimestamp < _endTimeStamp , "_startTimestamp

ë should be less than _endTimeStamp");

370 require(getMinute(_startTimestamp) == 0 && getSecond(

ë _startTimestamp) == 0, "_startTimestamp is not a whole hour");

371 require(getMinute(_endTimeStamp) == 0 && getSecond(

ë _endTimeStamp) == 0, "_endTimeStamp is not a whole hour");

372

373 Pool storage pool = pools[_poolId];

374 uint256 hoursInSeconds = _endTimeStamp - _startTimestamp;

375 uint256 rewardsPerHour = _amount * SECONDS_PER_HOUR /

ë hoursInSeconds;

376

377 RewardsPerHourInRange memory next = RewardsPerHourInRange(

ë _startTimestamp , _endTimeStamp , rewardsPerHour , _capPerPosition);

378 pool.rewardsPerHourInRanges.push(next);

379 }

This onlyOwner function should be called in a correct order meaning that

first, for example, the rewards for the first quarter for the ApeCoin

pool should be set, then the second quarter etc.

42

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

The ApeCoinStaking contract should enforce that the initial timestamp of

the new range is equal to the end timestamp of the previous range. This

check is currently missing in the smart contract and is prone to human

errors.

Recommendation:

It is recommended to enforce in the setRewardsPerTimeRange() function

that the initial timestamp of the new range is equal to the end timestamp

of the previous range.

Remediation Plan:

SOLVED: The Horizen Labs team solved the issue and the setRewardsPerTimeRange

() function now checks that the _startTimestamp of the new range is

equal to the last endTimestampHour of the previous range.

43

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.10 (HAL-10) WITHDRAWAPECOIN
FUNCTION DOES NOT AUTOMATICALLY
CLAIM THE ACCRUED REWARDS -
INFORMATIONAL

Description:

In the ApeCoinStaking contract, the following functions claim the rewards

and withdraw the staked Ape Coins:

• withdrawBAYC()

• withdrawSelfBAYC()

• withdrawMAYC()

• withdrawSelfMAYC()

• withdrawBAKC()

The same logic is not implemented in the withdrawApeCoin() and

withdrawSelfApeCoin() functions. Users would withdraw their staked Ape

Coins, but to claim the accrued Ape Coin rewards, they would need an

extra call to the claimApeCoin() or claimSelfApeCoin() functions.

Recommendation:

It is recommended to also claim the accrued rewards when withdrawApeCoin()

and withdrawSelfApeCoin() functions are called.

Remediation Plan:

SOLVED: The Horizen Labs team solved the issue and now also claims the

accrued rewards when the withdrawApeCoin() and withdrawSelfApeCoin()

functions are called.

44

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.11 (HAL-11) MINIMUM DEPOSIT AMOUNT
CAN BE BYPASSED - INFORMATIONAL

Description:

In the ApeCoinStaking contract, there is a minimum amount of Ape Coins

that users can deposit into any of the pools. This amount is equal to 1

Ape Coin:

Listing 18: ApeCoinStaking.sol (Line 171)

170 function depositApeCoin(uint256 _amount , address _recipient)

ë public {

171 require(_amount >= MIN_DEPOSIT , "Can't deposit less than 1

ë $APE");

172 updatePool(APECOIN_POOL_ID);

173

174 Position storage position = addressPosition[_recipient];

175 _deposit(APECOIN_POOL_ID , position , _amount);

176

177 emit Deposit(msg.sender , _amount , _recipient);

178 }

This minimum deposit restriction can be easily bypassed by doing a

withdrawal right after the deposit, leaving a small amount staked.

Proof of Concept:

1. User1 stakes 1_000000000000000000 Ape Coins into the Ape Coin pool.

2. User1 withdraws 999999999999999999 Ape Coins from the Ape Coin pool.

3. contract_ApeCoinStaking.stakedTotal(user1)-> 1

45

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Recommendation:

Consider unstaking all the tokens deposited when the remaining amount of

Ape Coins staked is lower than the MIN_DEPOSIT amount.

Remediation Plan:

ACKNOWLEDGED: The Horizen Labs team acknowledged this finding.

46

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.12 (HAL-12) LACK OF AN
EMERGENCYWITHDRAW FUNCTION -
INFORMATIONAL

Description:

As some issues found in the ApeCoinStaking contract caused some funds to

be locked in the smart contract and also taking into consideration the

high reputation of the project, we believe that it may be useful to:

1. Keep track offchain of all the deposits/stakes/withdrawals/accrued

rewards.

2. Add an emergencyWithdraw() function with an onlyOwner modifier that

is protected behind a multisignature wallet.

By implementing this, in case of any possible rounding/calculation issue

that may cause any funds to be locked, the emergencyWithdraw() function

could be used to retrieve the locked funds and assign them accordingly

to the affected users.

Recommendation:

It is recommended to:

1. Keep tracking offchain of all the deposits/stakes/withdrawals/accrued

rewards.

2. Add an emergencyWithdraw() function with an onlyOwner modifier that

is protected behind a multisignature wallet.

Remediation Plan:

ACKNOWLEDGED: The Horizen Labs team acknowledged this finding.

47

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.13 (HAL-13) MISSING REQUIRE
STATEMENT IN WITHDRAW FUNCTION -
INFORMATIONAL

Description:

In the ApeCoinStaking contract, the private _withdraw() function is called

every time a user wants to withdraw their Ape Coins from a staking pool:

Listing 19: ApeCoinStaking.sol (Line 173)

170 function _withdraw(uint256 _poolId , Position storage _position ,

ë uint256 _amount , address _recipient) private {

171 Pool storage pool = pools[_poolId];

172

173 _position.stakedAmount -= _amount;

174 pool.stakedAmount -= _amount;

175 _position.rewardsDebt -= (_amount * pool.

ë accumulatedRewardsPerShare).toInt256 ();

176

177 apeCoin.safeTransfer(_recipient , _amount);

178 }

Although, this function does not check if the _amount is actually <= than

the _position.stakedAmount. When this _amount is higher, the EVM will

revert with an overflow error.

Recommendation:

It is recommended to add a require statement that checks if the _amount is

actually <= than the _position.stakedAmount to avoid the overflow error.

Remediation Plan:

SOLVED: The Horizen Labs team solved the issue by adding the suggested

require statement.

48

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

49

AUTOMATED TESTING

4.1 STATIC ANALYSIS REPORT

Description:

Halborn used automated testing techniques to enhance the coverage of

certain areas of the smart contracts in scope. Among the tools used was

Slither, a Solidity static analysis framework. After Halborn verified

the smart contracts in the repository and was able to compile them

correctly into their ABIS and binary format, Slither was run against the

contracts. This tool can statically verify mathematical relationships

between Solidity variables to detect invalid or inconsistent usage of the

contracts’ APIs across the entire code-base.

Slither results:

ApeCoinStaking.sol

50

AU
TO

MA
TE

D
TE

ST
IN

G

51

AU
TO

MA
TE

D
TE

ST
IN

G

52

AU
TO

MA
TE

D
TE

ST
IN

G

ApeCoinStakedVoting.sol

No issues found by Slither.

• All the reentrancies flagged are false positives. All the NFT

contracts and the Ape Coin ERC20 contract are trusted contracts.

The code flow is never transferred to any other contract.

• The weak PRNG flagged by Slither is a false positive, as the contract

does not use any random number.

• No major issues found by Slither.

53

AU
TO

MA
TE

D
TE

ST
IN

G

4.2 AUTOMATED SECURITY SCAN

Description:

Halborn used automated security scanners to assist with detection of

well-known security issues and to identify low-hanging fruits on the

targets for this engagement. Among the tools used was MythX, a security

analysis service for Ethereum smart contracts. MythX performed a scan

on the smart contracts and sent the compiled results to the analyzers to

locate any vulnerabilities.

MythX results:

ApeCoinStaking.sol

ApeCoinStakedVoting.sol

• The assert violation is a false positive.

• There is a state variable called apeCoinStaking in the

ApeCoinStakedVoting which visibility is not declared; hence it will

be declared as private by default when compiled.

• No major issues found by MythX.

54

AU
TO

MA
TE

D
TE

ST
IN

G

THANK YOU FOR CHOOSING

	DOCUMENT REVISION HISTORY
	CONTACTS
	EXECUTIVE OVERVIEW
	INTRODUCTION
	AUDIT SUMMARY
	TEST APPROACH & METHODOLOGY
	RISK METHODOLOGY

	SCOPE

	ASSESSMENT SUMMARY & FINDINGS OVERVIEW
	FINDINGS & TECH DETAILS
	
	Description
	Proof of Concept
	Recommendation
	Remediation Plan

	
	Description
	Proof of Concept
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Proof of Concept
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Proof of Concept
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Proof of Concept
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Recommendation
	Remediation Plan

	
	Description
	Recommendation
	Remediation Plan

	
	Description
	Recommendation
	Remediation Plan

	
	Description
	Recommendation
	Remediation Plan

	
	Description
	Proof of Concept
	Recommendation
	Remediation Plan

	
	Description
	Recommendation
	Remediation Plan

	
	Description
	Recommendation
	Remediation Plan

	AUTOMATED TESTING
	STATIC ANALYSIS REPORT
	Description
	Slither results

	AUTOMATED SECURITY SCAN
	Description
	MythX results

